A spatio-temporal characterization of tree development based on patchiness patterns

Pierre Fernique^{1,2,6} Anaëlle Dambreville^{2,3} Jean-Baptiste Durand^{1,4} Christophe Pradal^{1,2} Pierre-Éric Lauri⁵ Frédéric Normand³ Yann Guédon^{1,2}

¹Inria, Virtual Plants

²CIRAD, UMR AGAP

³CIRAD, UPR HortSys

⁴Université Grenoble Alpes, LJK & Inria, Mistis

⁵INRA, UMR SYSTEM

⁵INRA, UMR MISTEA

2016/11/11

 \neg Mango tree

This presentation focuses on mango tree application

 \neg Mango tree

This presentation focuses on mango tree application

Introduction

Introduction

Patchiness is characterized by clumps of either vegetative or reproductive GUs within the canopy [Chacko, 1986]. Concerns more or less large branching systems and entails various agronomic problems [Ramírez and Davenport, 2010]. Patchiness is characterized by clumps of either vegetative or reproductive GUs within the canopy [Chacko, 1986]. Concerns more or less large branching systems and entails various agronomic problems [Ramírez and Davenport, 2010]. The objective is unfold as follows:

- 1. Identifying patches components within a tree.
- 2. Identifying patches identities within a forest.
- 3. Identifying patchiness dynamics within a forest.

The objective is unfold as follows:

- 1. Identifying patches components within a tree.
- 2. Identifying patches identities within a forest.
- 3. Identifying patchiness dynamics within a forest.

The experimental orchard was located at the Cirad research station in Saint-Pierre, Réunion Island [Dambreville et al., 2013]. 7 cultivars, 5 mango trees by cultivar. Described at the GU scale for 2 complete growth cycles. Vertexes represent botanical entities.

Edges encode either the temporal precedence of two botanical entities produced by the same meristem or the branching relationship between two botanical entities.

 \neg Patchiness formalization

Patchiness is varying according to time.

- Patchiness is varying according to time.
- Patchiness is mostly the result of what is observed on the canopy (i.e., tree-graph leaves) at a given time.

- Patchiness is varying according to time.
- Patchiness is mostly the result of what is observed on the canopy (i.e., tree-graph leaves) at a given time.
- Patchiness is induced by the presence of homogoneous tree subgraphes in a tree graph at a given time.

- Patchiness is varying according to time.
- Patchiness is mostly the result of what is observed on the canopy (i.e., tree-graph leaves) at a given time.
- Patchiness is induced by the presence of homogoneous tree subgraphes in a tree graph at a given time.

- Patchiness is varying according to time.
- Patchiness is mostly the result of what is observed on the canopy (i.e., tree-graph leaves) at a given time.
- Patchiness is induced by the presence of homogoneous tree subgraphes in a tree graph at a given time.

- Patchiness is varying according to time.
- Patchiness is mostly the result of what is observed on the canopy (i.e., tree-graph leaves) at a given time.
- Patchiness is induced by the presence of homogoneous tree subgraphes in a tree graph at a given time.

- Patchiness is varying according to time.
- Patchiness is mostly the result of what is observed on the canopy (i.e., tree-graph leaves) at a given time.
- Patchiness is induced by the presence of homogoneous tree subgraphes in a tree graph at a given time.

 \neg Patchiness formalization

Identifying patches of mango trees \equiv Finding an **optimal tree quotienting** of labeled tree graphs.

 \neg Patchiness formalization

Identifying patches of mango trees \equiv Finding an **optimal tree quotienting** of labeled tree graphs.

A tree quotienting of a tree graph $\mathcal{T} = (\mathcal{V}, \mathcal{E})$ is defined by:

- A set of vertices $\mathcal{P} \subseteq \mathcal{V}$.
- The function Π

$$\begin{aligned} \mathsf{\Pi} &: \mathcal{P} \to \mathfrak{P}\left(\mathcal{V}\right) \\ p &\mapsto \left\{ u \in \mathcal{V} : u \in \mathsf{De}\left(p\right) \setminus \cup_{q \in \mathcal{P} \cap \mathsf{de}(p)} \mathsf{De}\left(q\right) \right\}, \end{aligned}$$

where de(v) is the descendant set of vertex v, $De(v) = de(v) \cup \{v\}$ and $\mathfrak{P}(\mathcal{V})$ is the power set of \mathcal{V} .

 ${\cal P}$ denotes the set of change-points.

Identifying patches of mango trees \equiv Finding an **optimal tree quotienting** of labeled tree graphs.

For $S \subset \mathbb{N}$, let $(X_{i,j,k})_{k \in \mathcal{V}_{i,j}}$ be the \mathcal{X} -valued random process indexed by the random tree $i \in \mathcal{I} = \{0, \dots, I\}$ observed at time $j \in \mathcal{J} = \{0, \dots, J\}$ denoted by $T_{i,j} = (\mathcal{V}_{i,j}, \mathcal{E}_{i,j})$.

As for sequences, it's assumed that

$$\forall (i,i',j,j') \in \mathcal{I}^2 \times \mathcal{J}^2 \ : \ i \neq i' \lor j \neq j', \ (X_{i,j,k})_{k \in \mathcal{V}_{i,j}} \perp \!\!\!\!\perp \left(X_{i',j',k}\right)_{k \in \mathcal{V}_{i',j'}},$$

$$\forall (p, p') \subseteq \mathcal{P}^2 : p \neq p', (X_k)_{k \in \Pi(p)} \perp (X_k)_{k \in \Pi(p')}, \\ \forall p \subseteq \mathcal{P}, (X_k)_{k \in \Pi(p)} \sim \text{Categorical}(\theta_p) \text{ (i.i.d)}.$$

Thus, log-likelihood $\mathcal{L}\left((x_k)_{k\in\mathcal{V}}; \mathcal{P}, (\theta_p)_{p\in\mathcal{P}}\right)$ is easily computed for a given \mathcal{P} .

Finding an **optimal tree quotienting** defined by $\widehat{\mathcal{P}}$ of a labeled tree graph reduces to model selection using a penalized log-likelihood criterion.

$$\widehat{\mathcal{P}} = \operatorname*{arg\,max}_{P \in \mathfrak{P}(\mathcal{V})} \left\{ \mathcal{L}\left((x_k)_{k \in \mathcal{V}}; \mathcal{P}, (\theta_p)_{p \in \mathcal{P}} \right) - \operatorname{pen}\left(|\mathcal{P}| \right) \right\},\$$

To compute the penalization $pen(|\mathcal{P}|)$ we used slope heuristic methods [Baudry et al., 2012] with

$$\operatorname{pen}\left(|\mathcal{P}|\right) = 2\,\widehat{\kappa}\,\lograc{|\mathcal{V}|^{|\mathcal{P}|}}{|\mathcal{P}|!}.$$

Contrarilly to sequences, given the number of quotients $|\mathcal{P}|$, the inference of \mathcal{P} cannot be done with exact methods.

By definition:

$$\mathcal{P}^{(0)}=\left\{ r\right\} ,$$

with r the root of the tree graph, and

$$\mathcal{P}^{(1)} = \mathcal{P}^{(0)} \cup \left\{ \arg\max_{v \in \mathcal{V}} \left\{ \mathcal{L}\left((x_k)_{k \in \mathcal{V}}; \mathcal{P} \cup \{v\}, (\theta_p)_{p \in \mathcal{P} \cup \{v\}} \right) \right\} \right\},$$

is optimal.

 \neg Inference of tree-quotienting models

$$\mathcal{P}^{(k)} = \mathcal{P}^{(k-1)} \cup \left\{ \arg \max_{t \in \mathcal{T}} \left\{ \mathcal{L}\left(\bar{x}; \nu\left(\mathcal{P}^{(k-1)} \cup \{t\}\right), \theta_{\nu\left(\mathcal{P}^{(k-1)} \cup \{t\}\right)}\right) \right\} \right\},$$

¬ Inference of tree-quotienting models

$$\mathcal{P}^{(k)} = \mathcal{P}^{(k-1)} \cup \left\{ \arg \max_{t \in \mathcal{T}} \left\{ \mathcal{L}\left(\bar{x}; \nu\left(\mathcal{P}^{(k-1)} \cup \{t\}\right), \theta_{\nu\left(\mathcal{P}^{(k-1)} \cup \{t\}\right)}\right) \right\} \right\},$$

¬ Inference of tree-quotienting models

$$\mathcal{P}^{(k)} = \mathcal{P}^{(k-1)} \cup \left\{ \arg \max_{t \in \mathcal{T}} \left\{ \mathcal{L}\left(\bar{x}; \nu\left(\mathcal{P}^{(k-1)} \cup \{t\}\right), \theta_{\nu\left(\mathcal{P}^{(k-1)} \cup \{t\}\right)}\right) \right\} \right\},$$

¬ Inference of tree-quotienting models

$$\mathcal{P}^{(k)} = \mathcal{P}^{(k-1)} \cup \left\{ \arg \max_{t \in \mathcal{T}} \left\{ \mathcal{L}\left(\bar{x}; \nu\left(\mathcal{P}^{(k-1)} \cup \{t\}\right), \theta_{\nu\left(\mathcal{P}^{(k-1)} \cup \{t\}\right)}\right) \right\} \right\},$$

 \neg Inference of tree-quotienting models

$$\mathcal{P}^{(k)} = \mathcal{P}^{(k-1)} \cup \left\{ \arg \max_{t \in \mathcal{T}} \left\{ \mathcal{L}\left(\bar{x}; \nu\left(\mathcal{P}^{(k-1)} \cup \{t\}\right), \theta_{\nu\left(\mathcal{P}^{(k-1)} \cup \{t\}\right)}\right) \right\} \right\},$$

¬ Inference of tree-quotienting models

$$\mathcal{P}^{(k)} = \mathcal{P}^{(k-1)} \cup \left\{ \arg \max_{t \in \mathcal{T}} \left\{ \mathcal{L}\left(\bar{x}; \nu\left(\mathcal{P}^{(k-1)} \cup \{t\}\right), \theta_{\nu\left(\mathcal{P}^{(k-1)} \cup \{t\}\right)}\right) \right\} \right\},$$

 \neg Inference of tree-quotienting models

$$\mathcal{P}^{(k-1)} = \mathcal{P}^{(k)} \setminus \left\{ \arg \max_{t \in \mathcal{P}^{(\parallel)}} \left\{ \mathcal{L}\left(\bar{x}; \nu\left(\mathcal{P}^{(k)} \setminus \{t\}\right), \theta_{\nu\left(\mathcal{P}^{(k)} \setminus \{t\}\right)}\right) \right\} \right\},$$

 \neg Inference of tree-quotienting models

$$\mathcal{P}^{(k-1)} = \mathcal{P}^{(k)} \setminus \left\{ \arg \max_{t \in \mathcal{P}^{(\parallel)}} \left\{ \mathcal{L}\left(\bar{x}; \nu\left(\mathcal{P}^{(k)} \setminus \{t\}\right), \theta_{\nu\left(\mathcal{P}^{(k)} \setminus \{t\}\right)}\right) \right\} \right\},$$

 \neg Inference of tree-quotienting models

$$\mathcal{P}^{(k-1)} = \mathcal{P}^{(k)} \setminus \left\{ \arg \max_{t \in \mathcal{P}^{(\parallel)}} \left\{ \mathcal{L}\left(\bar{x}; \nu\left(\mathcal{P}^{(k)} \setminus \{t\}\right), \theta_{\nu\left(\mathcal{P}^{(k)} \setminus \{t\}\right)}\right) \right\} \right\},$$

 \neg Inference of tree-quotienting models

$$\mathcal{P}^{(k-1)} = \mathcal{P}^{(k)} \setminus \left\{ \arg \max_{t \in \mathcal{P}^{(\parallel)}} \left\{ \mathcal{L}\left(\bar{x}; \nu\left(\mathcal{P}^{(k)} \setminus \{t\}\right), \theta_{\nu\left(\mathcal{P}^{(k)} \setminus \{t\}\right)}\right) \right\} \right\},$$

 \neg Inference of tree-quotienting models

A merge approach:

$$\mathcal{P}^{(k-1)} = \mathcal{P}^{(k)} \setminus \left\{ \arg \max_{t \in \mathcal{P}^{(\parallel)}} \left\{ \mathcal{L}\left(\bar{x}; \nu\left(\mathcal{P}^{(k)} \setminus \{t\}\right), \theta_{\nu\left(\mathcal{P}^{(k)} \setminus \{t\}\right)}\right) \right\} \right\},$$

11

 \neg Inference of tree-quotienting models

$$\mathcal{P}^{(k-1)} = \mathcal{P}^{(k)} \setminus \left\{ \arg \max_{t \in \mathcal{P}^{(\parallel)}} \left\{ \mathcal{L}\left(\bar{x}; \nu\left(\mathcal{P}^{(k)} \setminus \{t\}\right), \theta_{\nu\left(\mathcal{P}^{(k)} \setminus \{t\}\right)}\right) \right\} \right\},$$

Identifying patches components within a tree \neg $_{\mathsf{Results}}$

Composition of trees (left-hand circles) against the composition of patches (right-hand circles).

The RGB poles respectively represent trees that purely reproductive tree, purely vegetative and purely quiescent.

Identifying patches components within a tree \neg $_{\mathsf{Results}}$

Scale of patch expression in reference to the different biological quotienting

Identifying patches identities with a forest

 \neg A reduction for interpretation

Manipulating tree quotienting of labeled trees is not an easy task.

But manipulating labeled tree is.

Identifying patches identities with a forest

 \neg A reduction for interpretation

Manipulating tree quotienting of labeled trees is not an easy task.

But manipulating labeled tree is.

Identifying patches identities with a forest \neg An EM algorithm for tree clustering

Using EM algorithm and MAP (Maximum A Posteriori) assignment of quotients of standard mixture models [McLachlan and Peel, 2000] such that vertices in same quotient are assigned to the same component [Picard et al., 2005].

Identifying patches identities with a forest \neg $_{\mathsf{Results}}$

5 different patch types found:

Using BIC, ICL criterion.

Identifying patches identities with a forest \neg $_{\mathsf{Results}}$

5 different patch types found:

The RGB poles respectively represent trees that purely reproductive tree, purely vegetative and purely quiescent.

Identifying patches identities with a forest \neg $_{\mathsf{Results}}$

R (resp. V, Q) for reproductive (resp. vegetative, quiescent) patches.

Identifying patchiness dynamics with a forest \neg ${\sf Problems}$

Identifying patches of mango trees \equiv Finding an optimal tree quotienting of labeled tree graphs.

Characterizing patches of mango trees \equiv Reducing an optimal tree quotienting into a labeled tree graph.

This considerations are purely spatial !

Identifying patchiness dynamics with a forest \neg ${\sf Problems}$

How to take into account that a mango tree i has been observed a different given dates $j \in \{0, \cdots, J\}$?

What is the outcome of a patch ? What is the source of a patch ?

Let $H_i = (\mathcal{V}_i, \mathcal{E}_i)$ be a directed acyclic graph such as

Its vertex set is defined as follows

$$\mathcal{V}_i = \{(j, p) \in \mathcal{J} \times \mathcal{P}_{i,j}\}.$$

Its edge set is defined as follows

$$\mathcal{E}_{i} = \left\{ \left(\left(j, p\right), \left(j+1, p'\right) \right) \in \mathcal{V}_{i}^{2} : \Pi_{i,j}\left(p\right) \cap \Pi_{i,j+1}\left(p'\right) \neq \emptyset \right\}.$$

Let $H_i = (\mathcal{V}_i, \mathcal{E}_i)$ be a directed acyclic graph such as

Its vertex set is defined as follows

$$\mathcal{V}_i = \{(j, p) \in \mathcal{J} \times \mathcal{P}_{i,j}\}.$$

Its edge set is defined as follows

$$\mathcal{E}_{i}=\left\{\left(\left(j, p
ight),\left(j+1, p'
ight)
ight)\in \mathcal{V}_{i}^{2}: \mathsf{\Pi}_{i, j}\left(p
ight)\cap \mathsf{\Pi}_{i, j+1}\left(p'
ight)
eq \emptyset
ight\}.$$

Let $H_i = (\mathcal{V}_i, \mathcal{E}_i)$ be a directed acyclic graph such as

Its vertex set is defined as follows

$$\mathcal{V}_i = \{(j, p) \in \mathcal{J} \times \mathcal{P}_{i,j}\}.$$

Its edge set is defined as follows

$$\mathcal{E}_{i}=\left\{\left(\left(j,p
ight),\left(j+1,p'
ight)
ight)\in\mathcal{V}_{i}^{2}:\Pi_{i,j}\left(p
ight)\cap\Pi_{i,j+1}\left(p'
ight)
eq\emptyset
ight\}.$$

Let $H_i = (\mathcal{V}_i, \mathcal{E}_i)$ be a directed acyclic graph such as

Its vertex set is defined as follows

$$\mathcal{V}_i = \{(j, p) \in \mathcal{J} \times \mathcal{P}_{i,j}\}.$$

Its edge set is defined as follows

$$\mathcal{E}_{i}=\left\{\left(\left(j,p
ight),\left(j+1,p'
ight)
ight)\in\mathcal{V}_{i}^{2}:\Pi_{i,j}\left(p
ight)\cap\Pi_{i,j+1}\left(p'
ight)
eq\emptyset
ight\}.$$

Identifying patchiness dynamics with a forest \neg $_{\mathsf{Results}}$

Identifying patchiness dynamics with a forest \neg $_{\mathsf{Results}}$

Identifying patchiness dynamics with a forest \neg ${\sf Discussion}$

$$\mathcal{E}_{i}=\left\{\left(\left(j, p
ight),\left(j+1, p'
ight)
ight)\in \mathcal{V}_{i}^{2}: \mathsf{\Pi}_{i, j}\left(p
ight)\cap \mathsf{\Pi}_{i, j+1}\left(p'
ight)
eq \emptyset
ight\}.$$

Identifying patchiness dynamics with a forest \neg $_{\text{Discussion}}$

MAP from mixture models for quotiented tree.

MAP from Markov models for quotiented tree such as the state duration is at most 1.

35 DAGs with a depth of 9.

Difficulties to detect particular events.

We used supervised classification tools on patch types given some summary statistics:

- The number of children denoted by d^+ .
- The number of children that are of a given patch type denoted by ch.
- The number of parent denoted by d^- .
- The number of parent that are of a given patch type denoted by pa..
- The patch scale of expression denoted by *S*.

Identifying patchiness dynamics with a forest \neg $_{\text{Discussion}}$

35 DAGs with a depth of 9.

Difficulties to compare them.

We used supervised classification tools on cultivars given some summary statistics:

- The average number of children of a given patch type denoted by d⁻.
- ► The average number of parent of a given patch type denoted by d⁺.
- ► The proportion of patch in each scale of expression or each period denoted by π.

Identifying patchiness dynamics with a forest

¬ Discussior

Such approaches are limited, we would rather perform unsupervised classification using models for random graphs.

Mixture model for random graphs [Daudin et al., 2008] but:

- undirected against directed edges (NoP),
- unlabeled against labeld vertices (NoP),
- \mathcal{V} known against random but with \mathcal{J} known.

Using ARMA-like models for the distribution of vertices along ${\cal J}$ [Weiß, 2008].

Limited number of vertices/states could lead to forward-backward algorithms for exact inference.

 Generalized the multiple change-point model from path-indexed data to tree-indexed data in order to detect homogeneous zones in tree-indexed data.

- Generalized the multiple change-point model from path-indexed data to tree-indexed data in order to detect homogeneous zones in tree-indexed data.
- Summarized time series of tree-indexed data into directed acyclic graphs.

- Generalized the multiple change-point model from path-indexed data to tree-indexed data in order to detect homogeneous zones in tree-indexed data.
- Summarized time series of tree-indexed data into directed acyclic graphs.
- This has been illustrated with the problem of patchiness within mango trees. Nevertheless, the methodology is not restricted to categorical data on tree-indexed data.

Patches seem to be well detected with our heuristic.

- Patches seem to be well detected with our heuristic.
- Some work is remaining concerning interpretability of directed acyclic graphs.

- Patches seem to be well detected with our heuristic.
- Some work is remaining concerning interpretability of directed acyclic graphs.
- Apply this methodology to study patchiness in other species or other phenomena (mango tree asynchronisms)?

References I

Baudry, J.-P., Maugis, C., and Michel, B. (2012). Slope heuristics: overview and implementation. *Statistics and Computing*, 22(2):455–470.

Chacko, E. (1986).

Physiology of vegetative and reproductive growth in mango (*Mangifera indica* L.) trees.

In *Proceedings of the First Australian Mango Research Workshop*, volume 1, pages 54–70. CSIRO Australia, Melbourne.

Dambreville, A., Lauri, P.-É., Trottier, C., Guédon, Y., and Normand, F. (2013).

Deciphering structural and temporal interplays during the architectural development of mango trees.

Journal of experimental botany, 64(8):2467–2480.

References II

- Daudin, J.-J., Picard, F., and Robin, S. (2008).
 A mixture model for random graphs.
 Statistics and computing, 18(2):173–183.
- McLachlan, G. and Peel, D. (2000). Finite mixture models. Wiley New York.
- Picard, F., Robin, S., Lavielle, M., Vaisse, C., and Daudin, J.-J. (2005).

A statistical approach for array CGH data analysis. *BMC bioinformatics*, 6(1):27.

 Ramírez, F. and Davenport, T. L. (2010).
 Mango (*Mangifera indica* L.) flowering physiology. 126(2):65–72.

Weiß, C. H. (2008).

Thinning operations for modeling time series of counts—a survey.

AStA Advances in Statistical Analysis, 92(3):319–341.