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This presentation focuses on mango tree application
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Introduction
¬ Patchiness

Patchiness is characterized by clumps of either vegetative or
reproductive GUs within the canopy [Chacko, 1986].
Concerns more or less large branching systems and entails various
agronomic problems [Raḿırez and Davenport, 2010].

The objective is unfold as follows:

1. Identifying patches components within a tree.

2. Identifying patches identities within a forest.

3. Identifying patchiness dynamics within a forest.

The experimental orchard was located at the Cirad research station
in Saint-Pierre, Réunion Island [Dambreville et al., 2013].
7 cultivars, 5 mango trees by cultivar.
Described at the GU scale for 2 complete growth cycles.
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Identifying patches components within a tree
¬ Tree-structured representation of plants

Vertexes represent botanical entities.

Edges encode either the temporal precedence of two botanical
entities produced by the same meristem or the branching
relationship between two botanical entities.

5



Identifying patches components within a tree
¬ Patchiness formalization

I Patchiness is varying according to time.

I Patchiness is mostly the result of what is observed on the
canopy (i.e., tree-graph leaves) at a given time.

I Patchiness is induced by the presence of homogoneous tree
subgraphes in a tree graph at a given time.
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Identifying patches components within a tree
¬ Patchiness formalization

Identifying patches of mango trees ≡ Finding an optimal tree
quotienting of labeled tree graphs.
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Identifying patches components within a tree
¬ Patchiness formalization

Identifying patches of mango trees ≡ Finding an optimal tree
quotienting of labeled tree graphs.

A tree quotienting of a tree graph T = (V, E) is defined by:

I A set of vertices P ⊆ V.

I The function Π

Π : P → P (V)

p 7→
{
u ∈ V : u ∈ De (p) \ ∪q∈P∩de(p)De (q)

}
,

where de (v) is the descendant set of vertex v ,
De (v) = de (v) ∪ {v} and P (V) is the power set of V.

P denotes the set of change-points.
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Identifying patches components within a tree
¬ Patchiness formalization

Identifying patches of mango trees ≡ Finding an optimal tree
quotienting of labeled tree graphs.

For S ⊂ N, let (Xi ,j ,k)k∈Vi,j be the X -valued random process

indexed by the random tree i ∈ I = {0, · · · , I} observed at time
j ∈ J = {0, · · · , J} denoted by Ti ,j = (Vi ,j , Ei ,j).

As for sequences, it’s assumed that

∀(i , i ′, j , j ′) ∈ I2×J 2 : i 6= i ′∨j 6= j ′, (Xi ,j ,k)k∈Vi,j ⊥⊥
(
Xi ′,j ′,k

)
k∈Vi′,j′

,

∀
(
p, p′

)
⊆ P2 : p 6= p′, (Xk)k∈Π(p) ⊥⊥ (Xk)k∈Π(p′) ,

∀p ⊆ P, (Xk)k∈Π(p) ∼ Categorical (θp) (i.i.d).

Thus, log-likelihood L
(

(xk)k∈V ;P, (θp)p∈P

)
is easily computed for

a given P. 7



Identifying patches components within a tree
¬ Inference of tree-quotienting models

Finding an optimal tree quotienting defined by P̂ of a labeled
tree graph reduces to model selection using a penalized
log-likelihood criterion.

P̂ = arg max
P∈P(V)

{
L
(

(xk)k∈V ;P, (θp)p∈P

)
− pen (|P|)

}
,

To compute the penalization pen (|P|) we used slope heuristic
methods [Baudry et al., 2012] with

pen (|P|) = 2 κ̂ log
|V||P|

|P|!
.
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Identifying patches components within a tree
¬ Inference of tree-quotienting models

Contrarilly to sequences, given the number of quotients |P|, the
inference of P cannot be done with exact methods.

By definition:
P(0) = {r} ,

with r the root of the tree graph, and

P(1) = P(0) ∪
{

arg max
v∈V

{
L
(

(xk)k∈V ;P ∪ {v} , (θp)p∈P∪{v}

)}}
,

is optimal.
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Identifying patches components within a tree
¬ Inference of tree-quotienting models

A split approach:

P(k) = P(k−1)∪
{

arg max
t∈T

{
L
(
x̄ ; ν

(
P(k−1) ∪ {t}

)
, θν(P(k−1)∪{t})

)}}
,
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Identifying patches components within a tree
¬ Inference of tree-quotienting models

A merge approach:

P(k−1) = P(k) \

{
arg max
t∈P(‖)

{
L
(
x̄ ; ν

(
P(k) \ {t}

)
, θν(P(k)\{t})

)}}
,
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Identifying patches components within a tree
¬ Results

Composition of trees (left-hand circles) against the composition of
patches (right-hand circles).

The RGB poles respectively represent trees that purely
reproductive tree, purely vegetative and purely quiescent.
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Identifying patches components within a tree
¬ Results

Scale of patch expression in reference to the different biological
quotienting
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Identifying patches identities with a forest
¬ A reduction for interpretation

Manipulating tree quotienting of labeled trees is not an easy task.

But manipulating labeled tree is.
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Identifying patches identities with a forest
¬ An EM algorithm for tree clustering

Using EM algorithm and MAP (Maximum A Posteriori)
assignment of quotients of standard mixture models
[McLachlan and Peel, 2000] such that vertices in same quotient
are assigned to the same component [Picard et al., 2005].
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Identifying patches identities with a forest
¬ Results

5 different patch types found:

Using BIC, ICL criterion.
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¬ Results

5 different patch types found:

The RGB poles respectively represent trees that purely
reproductive tree, purely vegetative and purely quiescent.
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Identifying patches identities with a forest
¬ Results

5 different patch types found:

R (resp. V, Q) for reproductive (resp. vegetative, quiescent)
patches. 18



Identifying patchiness dynamics with a forest
¬ Problems

Identifying patches of mango trees ≡ Finding an optimal tree
quotienting of labeled tree graphs.

≡

Characterizing patches of mango trees ≡ Reducing an optimal tree
quotienting into a labeled tree graph.

≡

This considerations are purely spatial !
19



Identifying patchiness dynamics with a forest
¬ Problems

How to take into account that a mango tree i has been observed a
different given dates j ∈ {0, · · · , J} ?

What is the outcome of a patch ? What is the source of a patch ?
20



Identifying patchiness dynamics with a forest
¬ A DAG representation

Let Hi = (Vi , Ei ) be a directed acyclic graph such as

I Its vertex set is defined as follows

Vi = {(j , p) ∈ J × Pi ,j} .

I Its edge set is defined as follows

Ei =
{(

(j , p) ,
(
j + 1, p′

))
∈ V2

i : Πi ,j (p) ∩ Πi ,j+1

(
p′
)
6= ∅
}
.

Hi represents the patchiness dynamic of the mango tree i .
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Identifying patchiness dynamics with a forest
¬ Results
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Identifying patchiness dynamics with a forest
¬ Discussion

Ei =
{(

(j , p) ,
(
j + 1, p′

))
∈ V2

i : Πi ,j (p) ∩ Πi ,j+1

(
p′
)
6= ∅
}
.

Ei =
{(

(j , p) ,
(
j + 1, p′

))
∈ V2

i :
∣∣Πi ,j (p) ∩ Πi ,j+1

(
p′
)∣∣ ≥ α |Πi ,j (p)|

}
.
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Identifying patchiness dynamics with a forest
¬ Discussion

MAP from mixture models for quotiented tree.

MAP from Markov models for quotiented tree such as the state
duration is at most 1.
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Identifying patchiness dynamics with a forest
¬ Discussion

35 DAGs with a depth of 9.

Difficulties to detect particular events.

We used supervised classification tools on patch types given some
summary statistics:

I The number of children denoted by d+.

I The number of children that are of a given patch type
denoted by ch..

I The number of parent denoted by d−.

I The number of parent that are of a given patch type denoted
by pa..

I The patch scale of expression denoted by S .
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Identifying patchiness dynamics with a forest
¬ Discussion
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Identifying patchiness dynamics with a forest
¬ Discussion

35 DAGs with a depth of 9.

Difficulties to compare them.

We used supervised classification tools on cultivars given some
summary statistics:

I The average number of children of a given patch type denoted
by d−. .

I The average number of parent of a given patch type denoted
by d+

. .

I The proportion of patch in each scale of expression or each
period denoted by π..
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Identifying patchiness dynamics with a forest
¬ Discussion
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Identifying patchiness dynamics with a forest
¬ Discussion

Such approaches are limited, we would rather perform
unsupervised classification using models for random graphs.

Mixture model for random graphs [Daudin et al., 2008] but:

I undirected against directed edges (NoP),

I unlabeled against labeld vertices (NoP),

I V known against random but with J known.

Using ARMA-like models for the distribution of vertices along J
[Weiß, 2008].

Limited number of vertices/states could lead to forward-backward
algorithms for exact inference.
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Conclusion

I Generalized the multiple change-point model from
path-indexed data to tree-indexed data in order to detect
homogeneous zones in tree-indexed data.

I Summarized time series of tree-indexed data into directed
acyclic graphs.

I This has been illustrated with the problem of patchiness
within mango trees. Nevertheless, the methodology is not
restricted to categorical data on tree-indexed data.
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Conclusion

I Patches seem to be well detected with our heuristic.

I Some work is remaining concerning interpretability of directed
acyclic graphs.

I Apply this methodology to study patchiness in other species
or other phenomena (mango tree asynchronisms)?
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