Context and objective	Labelled DBN	SBM for prior on communities	Structure learning algorithm	Experiments

Labeled dynamic Bayesian network for learning ecological network

Étienne Auclair, Nathalie Peyrard, Régis Sabbadin

INRA - Unité MIAT

December 14, 2017

Context and objective ${\scriptstyle { \bullet } \odot }$

Labelled DBN 0000 SBM for prior on communities

Structure learning algorithm

Experiments 000

Ecological context and objective

Context

- Management of biodiversity within an ecological network
- Interactions are poorly known
- Few data, but expert knowledge

Objective

Developing a method for learning the structure of an ecological network using presence/absence temporal data

Context and objective Labelled DBN SBM for prior on communities

Structure learning algorithm

Experiments

Ecological network modeling

Ecological network

- Directed graph. Nodes represents species.
- Edges labeled according to the type of interaction :
 - + : Positive influence for survival
 - - : Negative influence for survival

Associated labelled Dynamic Bayesian Network model

- Binary variables (presence/absence)
- Survival and recolonization depend on previous year

t

Context and objective

Labelled DBN ●000 SBM for prior on communities

Structure learning algorithm 000

Experiments 000

Labeled dynamic Bayesian network model

Definition

- Each edge is labelled
- The transition probability distribution of a variable X^t_i only depends on its number of parents of each state and label
- Two variables with the same numbers of parents of each state and each label have the same transition probability distributions
- Transition probability distribution : function of a small vector of parameters θ. The size of θ independent from the graph structure.

Context and objective La

Labelled DBN ○●○○ SBM for prior on communities

Structure learning algorithm 000

Experiments 000

Labeled dynamic Bayesian network model

Definition

- Each edge is labelled
- The transition probability distribution of a variable X^t_i only depends on its number of parents of each state and label
- Two variables with the same numbers of parents of each state and each label have the same transition probability distributions
- Transition probability distribution : function of a small vector of parameters θ. The size of θ independent from the graph structure.

Context and objective	Labelled DBN ○○●○	SBM for prior on communities	Structure learning algorithm	Experiments 000
Model of sp	ecies dyn	amics		

Data

- $X_t^i \in \{1,0\}$ presence or absence of the species i $(i \in \{1,...,n\})$ at year t $(t \in \{1,...,T\})$.
- $A^t \in \{1,0\}$ protection or absence of protection at year t.

Parameters

- Recolonization probability ε .
- Probability of success of each positive influence ρ .
- Probability of success of each negative influence τ .

Context and objective	Labelled DBN ○○○●	SBM for prior on communities	Structure learning algorithm	Experiments 000
Transition F	Probabiliti	es		

Recolonization

Species absent at year t - 1: probability of recolonization at year t: $P(X_i^t = 1 | X_i^{t-1} = 0) = \varepsilon$

Survival

Species present at year t - 1: probability of survival at year t: $P(X_i^t = 1 | X_i^{t-1} = 1) = (1 - (1 - \rho)^{N_{i,+}^t}) (1 - \tau)^{N_{i,-}^t}$

 $N_{i,l}^t$: number of "l" labeled parents of the species *i* present at year *t*.

Context and objective Labelled DBN SBM for prior on communities

Structure learning algorithm 000

Experiments 000

SBM model for prior on communities

Definition

- Known blocks (communities) of variables in the network
- The probability of presence of a labelled edge i → j is a function of its label and the blocks of i and j parameterized by ψ.

Context and objective	Labelled DBN 0000	SBM for prior on communities	Structure learning algorithm	Experiments 000

SBM model for prior on trophic levels

Hypothesis knowing trophic levels

- No top down positive edge
- Positive edges more likely on the closest superior trophic level
- Top down negative edges more likely than bottom-down or intra-level negative edges

Context and objective	Labelled DBN 0000	SBM for prior on communities	Structure learning algorithm	Experiments 000

Probabilities of edges presence

Positive edges

Trophic levels TL(i) and TL(j) determine the probability of presence of the labelled edge G'_{ij} .

• Top-down and intra-level : $P(G_{ij}^+|TL(i) \ge TL(j)) = 0.$

• Bottom-up :
$$P(G_{ij}^+|TL(i) \ge TL(j)) = \frac{e^{\alpha \Delta_{ij}}}{1+e^{\alpha \Delta_{ij}}}$$

with $\Delta_{ij} = TL(i) - TL(j)$ and $\alpha > 0$

Negative edges

•
$$P(G_{ij}^-|TL(i) \leq TL(j)) = \beta_2$$

•
$$P(G_{ij}^-|TL(i) > TL(j)) = \beta_1$$

with $\beta_1 > \beta_2$

 $\psi = (\alpha, \beta_1, \beta_2)$

Score-based method

- Number of parameters independent from structure : likelihood as score
- Greedy algorithm
 - Step 1 (Estimation) : Parameters estimation by likelihood maximization, graph structure known
 - Step 2 (Restoration) : Learning network structure maximizing likelihood, parameters known
 - Back to step 1 until convergence

Context and objective Labelled DBN SBM for prior on communities Structure learning algorithm

Ecological network learning algorithm

Decomposability of the likelihood

$$\log P(x^1, \dots, x^T \mid x^0, a, \theta, \mathcal{LG}_{\rightarrow}) = \sum_{i=1}^n score(i)$$

$$score(i) = \sum_{\substack{t=0\\t=0}}^{T-1} (1-x_i^t) \log \varepsilon \\ + \sum_{t=0}^{T-1} x_i^t \sum_{\substack{0 \le d^+ + d^- \le k}} \log \left(\left(1 - (1-\rho)^{d^+} \right) (1-\tau)^{d^-} \right) R_i^{t,d^+,d^-}$$

with $R_i^{t,d^+,d^-} = 1$ iff the species *i* has d^+ positive labelled parents and d^- negative labelled parents present at year t

Likelihood term for SBM

SBM term :
$$logP(\mathcal{LG}_{\rightarrow}|\psi) = \sum_{j} score^{SBM}(j)$$

$$\begin{split} & \textit{score}^{\textit{SBM}}(j) = \sum_{i, \Delta_{ij}=0} g_{ij}^{-} \log \beta_2 + (1 - g_{ij}^{-}) \log (1 - \beta_2) \\ &+ \sum_{i, \Delta_{ij}<0} \alpha \Delta_{ij} g_{ij}^{+} - \log (1 + \exp^{\alpha \Delta_{ij}}) + (1 - g_{ij}^{+}) (g_{ij}^{-} \log \beta_2 + (1 - g_{ij}^{-}) \log (1 - \beta_2)) \\ &+ \sum_{i, \Delta_{ij}>0} g_{ij}^{-} \log \beta_1 + (1 - g_{ij}^{-}) \log (1 - \beta_1) \end{split}$$

Experiments

Ecological network learning algorithm

Integer linear programming (ILP) 0-1

- Linearisation of the problem : addition of binary variables defined by linear constraints
- Optimization of the score using ILP
- One independent ILP per variable

Eventrimonto					
				•00	
Context and objective	Labelled DBN	SBM for prior on communities	Structure learning algorithm	Experiments	

Tested methods

- L-DBN, no additionnal knowledge
- L-DBN, SBM prior
- L-DBN, 20% of known edges, no SBM prior
- MIT^a score method and qualitative network^b

^aMutual Information Test. Vinh, 2011 ^bWellman, 1990

Simulations

• Synthetic networks built from SBM model $(\alpha = 1/\sqrt{20}, \beta_1 = \alpha/2, \beta_2 = \beta_1/2)$

•
$$\varepsilon = \rho^+ = \rho^- = \mu = 0.8$$

 10 networks simulated, 10 datasets per network, 20 species, 30 years, last 18 years protected

Synthetic n	etwork re	sults		
Context and objective	Labelled DBN 0000	SBM for prior on communities	Structure learning algorithm	Experiments 000

J

Context and objective	Labelled DBN 0000	SBM for prior on communities	Structure learning algorithm	Experiments 00●
Real networ	·k			

Arthropods dataset (Bohan et al, 2013)

Arthropods trapped in experimental fields

- 66 Beetroot (41 species)
- 59 Maize (29 species)

- 67 Summer rape (40 species)
- 65 Winter rape (29 species)

Conclusion				
Context and objective	Labelled DBN 0000	SBM for prior on communities	Structure learning algorithm	Experiments 000

Labeled dynamic Bayesian network

- Few data available
- DBN with few parameters
- Structure learning using ILP
- Inclusion of expert knowledge
- SBM prior improves learning quality

Application of LDBN and perspectives

- Adaptable for "propagation per contact" models (rumor propagation, network security, disease propagation, fire propagation...)
- Managing while learning : Factored reinforcment learning with MDP and LDBN transition structure