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1 Introduction

In statistical physics, many distribution laws over a spatially explicit space
can be written in an explicit form, but are untractable through direct cal-
culation, as the number of operations required grows exponentially with the
dimension of the system. This is the case for Boltzmann distribution

p (x) =
1

Z
exp−β H(x) (1.1)

over a lattice for the Ising model, where H(x) is the energy of the system
in state x and Z is the partition function Z =

∑
x exp−β H(x). H(x)

can in general be computed in polynomial time with the size of the sys-
tem, whereas Z requires

∑
x operations, which grows exponentially with

n. Most of thermodynamic function can be derived from Z, hence com-
putation of Z is crucial. One way to circumvent intractability is to ap-
proximate H by a function H̃ as close as possible to H for which cal-
culations are tractable. A natural example is H(x) =

∑
i Hi(xi), where

Z =
∑

x (
∏

i exp−β Hi(xi)) =
∏

i

(∑
xi

exp−β H(xi)
)
. This amounts to

approximating distribution p(x) by a ”simpler” (in a sense relevant for the
expected calculations) distribution q(x).

An untractable distribution p being given, there exist several ways to select
the approximate distribution q. One way, not addressed specifically here,
but worth being mentioned and compared with, is to select a family F of
tractable distributions, compute the distribution q ∈ F as close as possible
to p, and make calculation of desired quantities (partition function, marginal
distribution etc.) on approximate distribution q. If the family is a family
of univariate laws, q(x) =

∏
i qi(xi), this yields mean field approximation.

Pair and Bethe approximations are obtained by more complex calculations
involving products of laws depending on singletons xi and pairs (xi, xj). The
way addressed here is Kikuchi approximation, or cluster variational meth-
ods (CVM). Kikuchi approximations at order r are expressed as products
(at a given exponent) of marginal laws of p at order r at most. If mi(xi)
is the marginal law of p on i, Kikuchi approximation at order 1 simply is∏

i mi(xi). Note that in general, it is not the best approximation of p as a
product

∏
i qi(xi) (the latter being mean field approximation).

In this paper, we recall how Kikuchi approximations of a distribution p can
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be retrieved as cut-off in so called Moebius decompositions of p at a given
order, yielding an approximation q as a product q =

∏
i qi each function qi

being of lower order after cut-off. Intensively studied models such as graphi-
cal models are an example of these approximations (see [? ]). A link between
Kikuchi approximation and Moebius formula has been noticed by Schlijper
(cited in [? ]). Distributions q written as products q =

∏
α qα(xα) where

α ⊂ {1, n} is a multi-index made of some nodes i only can be formalized
by factor graphs: a factor graph is a bipartite graph of nodes i and factors
α, with edge between i and α when i is in α (see [? ]). Message passing
on factor graphs is a technique to efficiently (i.e. in a reasonable time with
reasonable memory) compute marginal probability distributions of q (see [?
, chapter 26], [? ]). It is exact when the topology of the graph is loop free
(XXX preciser, erreur d’ecriture dans yediddia ..... qui parle du bipartite
graph, qui est tjs loop free ...).

The name of Kikuchi is often associated to a technique which is related to,
but different from, the previous question. Both types of references when used
together (which is often meaningful) may create some confusion if proper ref-
erences are not fully explicit. We try here to make them explicit. One way
(among others) to quantify the distance between two distributions is to use
the Kullback-Leibler distance

KL(q‖p) =
∑

x

q(x) Log
q(x)

p (x)
(1.2)

It is not a distance as it is not symmetric: KL(q‖p ) 6= KL(p ‖q) in general.
In the case where p is a Boltzmann distribution (or, a vocabulary of stochastic
processes, a Gibbs distribution – therefore, it is necessary and sufficient that
p is never equal to 0 – ) i.e. p (x) = (1/Z) exp−β H(x), then Log p (x) =
−β H(x)− Log Z and it is classical to show that

KL(q‖p) = β(F(q)− F(p)) (1.3)

where the free energy F(p) of a distribution p is defined as β F(p) = −Log Z
or F(p) = U(p) − β−1H(p). Gibbs inequality states that, p being given,
KL(q‖p) ≥ 0 whatever the distribution q, with KL(q‖p) = 0 for q = p.
Then, F(q) ≥ F(p), and the distribution q the closest to p in the sense of the
Kullback-Leibler distance is the one with minimum free energy. The quantity
F(q) is called the Kikuchi free energy of the system. Then, approximating p
by q is minimizing its Kikuchi free energy.
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2 A simple calculation for a law with two

variables

Let us have a set Ω = Λ × Λ, with Λ = [1, q] ⊂ N, and p a probability
law on Ω. The law p is completely determined by the values p (x1, x2) with
x1, x2 ∈ Λ. The marginal law m1 on x1 is given by

m1(x1) =
∑
x2

p (x1, x2) (2.1)

and m2 on x2 by

m2(x2) =
∑
x1

p (x1, x2) (2.2)

The question addressed here is to find a law q on Ω, the marginal of which are
constrained to be equal respectively to give laws m1 and m2, and the entropy
of which is maximum. It can be solved easily by Lagrange multipliers as in
routine optimization under constraints. Here, we develop a direct calculation
making use of convexity of function x Log x. The reason for this choice is
that the latter can easily be extended to general laws p (x) with x ∈ Λn under
more general constraints on any marginal laws mI with I ⊂ {1, n}, whereas
the generalization of the calculation with Lagrange multipliers is less simple.

It is possible to write

p (x1, x2) = m1(x1) m2(x2) c(x1, x2) (2.3)

which can be read as a definition of c. This is a general form, and any
probability law q(x1, x2) can be written this way. Independence between x1

and x2 yields c = 1. Then

m1(x1) =
∑
x2

p (x1, x2)

=
∑
x2

m1(x1) m2(x2) c(x1, x2)

= m1(x1)
∑
x2

m2(x2) c(x1, x2)

(2.4)

This yields ∑
x2

m2(x2) c(x1, x2) = 1 (2.5)

4



Similarly ∑
x1

m1(x1) c(x1, x2) = 1 (2.6)

Then

H(p) = −
∑
x1,x2

p (x1, x2) Log p (x1, x2)

= −
∑
x1,x2

m1(x1) m2(x2) c(x1, x2) Log (m1(x1) m2(x2) c(x1, x2))

=
∑
x1,x2

m1(x1) m2(x2) c(x1, x2) (Log m1(x1) + Log m2(x2) + Log c(x1, x2))

(2.7)
Now

∑
x1,x2

m1(x1) m2(x2) c(x1, x2) Log m1(x1) =
∑
x1

m1(x1) Log m1(x1)

(∑
x2

m2(x2) c(x1, x2)

)
=
∑
x1

m1(x1) Log m1(x1)

= H(m1)
(2.8)

(as
∑

x2
m2(x2) c(x1, x2) = 1). Similarly∑

x1,x2

m1(x1) m2(x2) c(x1, x2) Log m2(x2) = H(m2) (2.9)

Then

H(p) = H(m1) +H(m2)−
∑
x1,x2

m1(x1) m2(x2) c(x1, x2) Log c(x1, x2) (2.10)

Then, the entropy H(p) is maximum when the term due to interactions
I(p) =

∑
x1,x2

m1(x1) m2(x2) c(x1, x2) Log c(x1, x2) is minimum. It is now
shown that ∀ p, I(p) ≥ 0 and that the minimum I = 0 is reached for
∀ (x1, x2), c(x1, x2) = 1.

Let us notice that
∀ x ≥ 0, x Log x ≥ x− 1 (2.11)
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This is easily shown as (x Log x)′ = 1 + Log x, (x Log x)′′ = 1/x > 0, and
x Logx is convex. It is always above x−1 as the slope at contact with x−1,
at x = 1, is equal to 1. Then

I(p) ≥
∑
x1,x2

m1(x1) m2(x2) (c(x1, x2)− 1)

=
∑
x1,x2

m1(x1) m2(x2) c(x1, x2)−
∑
x1,x2

m1(x1) m2(x2)− 1

= 1− 1

= 0

(2.12)

As ∀ (x1, x2), m1(x1), m2(x2) c(x1, x2) > 0, the value I(p) = 0 is ob-
tained at ∀ (x1, x2), c(x1, x2) Log c(x1, x2) = 0. As c(x1, x2) > 0, this yields
Log c(x1, x2) = 0 and c(x1, x2) = 1. Then, the maximum of H(p) is obtained
at the minimum of I(p), which is obtained at I(p) = 0 and

Hmax(p) = H(m1) +H(m2) (2.13)

This yields the classical result: among all the probability laws with con-
straints marginal laws (m1, m2), the one with maximum entropy is the one
with independence p = m1m2. This is a special (and easy) case of a more
general result, which is developed here along he same way. Before that, we
simply recall the classical extension to a probability law on a discrete space
of size n.

3 Moebius inversion formula and decomposi-

tion

The Moebius inversion formula states that,

Let V = {1, n} ⊂ N. Let p be a probability law on Ω = Λn. The set
P(B) is in this example the partially ordered set for application of Moebius
inversion formula.

Let B ⊂ V . Let us note p|B the marginal law of p on B. Then, there
exist a set of maps cA for any subset A ⊂ V

cA : A −−−→ R+

x|A −−−→ cA(x|A)
(3.1)
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such that
∀ B ⊂ V , p|B(x|B) =

∏
A⊂B

cA(x|A) (3.2)

In particular, if B = V
p (x) =

∏
A⊂V

cA(x|A) (3.3)

This is shown by constructing the maps cA. For sake of simplicity, if B = {i},
we note cB(x|B)

.
= ci(xi) and so forth for higher orders. Similarly, we note

mi(xi)
.
= p|{i}. Putting B = {i} yields

mi(xi) = ci(xi) (3.4)

Then, all maps ci are determined this way. Knowing that, and putting B =
{i, j} yields

mij(xi, xj) = ci(xi) cj(xj) cij(xi, xj) (3.5)

Thus

cij(xi, xj) =
mij(xi, xj)

mi(xi) mj(xj)
(3.6)

Ordering these calculations by increasing order of I yields all the maps cA.
Writing all the maps cA as functions of marginal probabilities mI as in equa-
tion 3.6 is a Moebius inversion formula. It yields that

cI(xI) =
∏

I,J : |J |<|I|

m
µI,J

J (xJ) (3.7)

In 3.6, I = (i, j), µij = 1, µi = µj = −1.

For this inversion to be possible, it is not necessary that all the subsets
B ⊂ V are considered. Let us have a subset R of all subsets P(V) of V :
R ⊂ P(V). Under which conditions is it possible to derive a Moebius in-
version formula on R? Let us take as an example the set V = {1, 2, 3, 4, 5},
and

R = {r1 = {1}, r2 = {2, 3}, r3 = {1, 4, 5}, r4 = {2, 3, 4, 5}} (3.8)

We have
r1 ⊂ r3, r2 ⊂ r4 (3.9)
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Then, let us assume that

p (x1, x2, x3, x4, x5) = c1(x1) c23(x2, x3) c145(x1, x4, x4) × . . .

. . .× c2345(x2, x3, x4, x5) c12345(x1, x2, x3, x4, x5)
(3.10)

Then

c1(x1) = m1(x1)

c23(x2, x3) = m23(x2, x3)

c145(x1, x4, x4) =
m145(x1, x4, x4)

m1(x1)

c2345(x2, x3, x4, x5) =
m2345(x2, x3, x4, x5)

m23(x2, x3)

c12345(x1, x2, x3, x4, x5) =
p12345(x1, x2, x3, x4, x5)

m1(x1) m23(x2, x3)
m145(x1,x4,x4)

m1(x1)
m2345(x2,x3,x4,x5)

m23(x2,x3)

=
p12345(x1, x2, x3, x4, x5)

m145(x1, x4, x4) m2345(x2, x3, x4, x5)
(3.11)

A Moebius inversion can be derived on any subset R ⊂ P(V) of all the sub-
sets of V . No specific condition is required therefore.

Two sets R are often considered as they yield to classical decomposition.
If G = (V , E) is a connected graph, the set R of connected subgraphs of G
is closed by inclusion. Applying Moebius inversion formula on this subset
yields the classical decompostion (XXX Pearl)

p (x) =

∏
i∼j mij(xi, xj)∏
k mdk−1

k (xk)
c(x) (3.12)

A second choice is the set of cliques in G. A clique C in a graph G is a set of
vertices such that there is an edge in E between any pair of vertices in the
clique. The set of cliques is closed by inclusion too. This set is naturally
connected to graphical models. In a graphical model, a potential φC(xC) is
defined on each clique C, and the global potential (as φ = exp−βE where E
is the energy in Ising model) is defined as

φ(x) =
∏
C

φC(xC) (3.13)
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A key question is to compute a probability function

p (x) =
1

Z
φ(x), Z =

∑
x

φ(x) (3.14)

Computing Z is often untractable. Therefore, approximations are considered,
and among the Kikuchi approximation.

4 Kikuchi approximation

A Kikuchi approximation Kr(p) of probability law p at order r is a cut-off of
of development 3.3 at subsets A of a given size

Kr(p) =
∏

A : |A|≤r

cA(x|A) (4.1)

For example, the Kikuchi approximation at order r = 2 reads

K2(p) =

∏
ij mij(xi, xj)∏
k mn−1

k (xk)
(4.2)

This approximation may, or may not, be a probability law. Indeed, it may,
or may not, sum up to one.

A Kikuchi approximation at order r is a function of marginal laws of p up
to order r. It is in general, if I is a multi-index (I = (i1, . . . , ik), k ∈ {1, r}),
with |I| = k, of the form

Kr(p) =
∏
|I|

mαI
I (x|I) (4.3)

Let us call Ar
p(x) the probability associated with Kr(p), that is Ar

p(x) =
αKr(p) where α is a normalization constant. Then, it is possible to write

p (x) = Ar
p(x) Cr

p(x) (4.4)

with Cr
p(x) being made of maps cA of order s > r.
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5 Result

We show here that Ar
p is the probability law with maximal entropy among

those the marginal laws of which are constraint to be the laws mI . In other
words, if mI(p) is the marginal law of p on multiindex I

mI(q) = mI(p) ∀ I : |I| ≤ r ⇒ H(q) ≤ H(Ar
p) (5.1)

Let us suppose that q has same marginal laws than p up to order r. then,
we can write

q(x) = Ar
p(x)C(x) (5.2)

with C(x) being a function of maps of order ≥ r. It is then possible to
develop

H(q) = −
∑

x

q (x) Log q (x)

= −
∑

x

Ar
p(x) C(x) Log Ar

p(x) C(x)

= −
∑

x

Ar
p(x) C(x) (Log Ar

p(x) + Log C(x))

= −
∑

x

Ar
p(x) C(x) Log Ar

p(x)−
∑

x

Ar
p(x) C(x) Log C(x)

(5.3)

As C(x) Log C(x) ≥ C(x)− 1, this yields

H(q) ≤ −
∑

x

Ar
p(x) C(x) Log Ar

p(x)−
∑

x

Ar
p(x)(C(x)− 1) (5.4)

As Ar
p(x) is a probability law,

∑
x Ar

p(x) = 1, and as q (x) = Ar
p(x) C(x),∑

x Ar
p(x) C(x) = 1. Thus,

∑
x Ar

p(x)(C(x)− 1) = 0, and

H(q) ≤ −
∑

x

Ar
p(x) C(x) Log Ar

p(x) (5.5)

We now show that∑
x

Ar
p(x) C(x) Log Ar

p(x) =
∑

x

Ar
p(x) Log Ar

p(x)

= H(Ar
p)

(5.6)
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which shows that
H(q) ≤ H(Ar

p) (5.7)

We recall that
Ar

p(x) = α ∗
∏

I

mαI
I (x) (5.8)

where α is a normalizing constant, equal to 1 if Kr(p) is a probability (for
sake of simplification we omit that in fact mI(x) = mI(x|I)). Then

Log Ar
p(x) = Logα +

∑
I

αI Log mI(x) (5.9)

and∑
x

Ar
p(x) C(x) LogAr

p(x) = Logα+
∑

I

αI

∑
x

Ar
p(x) C(x)LogmI(x) (5.10)

We now show that

∀ I,
∑

x

Ar
p(x) C(x) Log mI(x) =

∑
x

Ar
p(x) Log mI(x) (5.11)

Therefore, let us note J the multi-index of indices in V = {1, n} and not in
I. Let us note y the subset y = x|I and z = x|J . Then,

∑
x =

∑
z

∑
y. As

mI(z) is the marginal law of q for I, we have, by definition

mI(z) =
∑

y

q(z, y)

=
∑

y

Ar
p(z, y)C(z, y)

= mI(z)
∑

y

Ar
p(z, y)C(z, y)

mI(z)

(5.12)

Then ∑
y

Ar
p(x)C(x)

mI(z)
= 1 (5.13)
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and∑
x

Ar
p(z, y) C(z, y) Log mI(z) =

∑
x

Ar
p(z, y) C(z, y)

mI(z)
mI(z) Log mI(z)

=
∑

z

mI(z) Log mI(z)
∑

y

Ar
p(z, y) C(z, y)

mI(z)

=
∑

z

mI(z) Log mI(z)

(5.14)
Then∑

x

Ar
p(x) C(x) Log Ar

p(x) = Logα +
∑

I

αI

∑
x

Ar
p(x) C(x) Log mI(x)

= Logα +
∑

I

αI

∑
z

mI(z) Log mI(z)

(5.15)
In this form, it is possible to recognize H(Ar

p) = −
∑

x Ar
p(x) Log (Ar

p(x)).
Indeed, the entropy H(p) of a law p is the expectation of −Log p, as

H(p) = −
∑

x

p (x) Log p (x)

= Ep(−Log p)

(5.16)

where Ep(f(x)) =
∑

x p (x) f(x). Then

H(Ar
p) = EAr

p
(−Log Ar

p)

= −Logα− EAr
p

(
Log

∏
I

mαI
I

)

= −Logα− EAr
p

(
−
∑

I

αI Log mI

)
= −Logα−

∑
I

αIEAr
p
(Log mI)

= −Logα−
∑

I

αI

∑
x

mI(x) Log mI(x)

(5.17)
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Indeed, recalling that y
.
= x|I and z

.
= x|J

EAr
p
(−Log mI) = −

∑
x

Ar
p(x) Log mI(z)

= −
∑

z

Log mI(z)
∑

y

Ar
p(z, y)

(5.18)

and by definition
∑

y Ar
p(z, y) = mI(z).

6 Just for fun

KL(q‖p) =
∑

x

q(x) Log
q(x)

p (x)

= Eq Log q(x)− Eq Log p (x)

= Eq Log q(x) + Eq(β H(x) + Log Z)

= −H(q) + β U(q) + Log Z

= β
(
U(q)− β−1H(q)

)
+ Log Z

= β F(q) + Log Z

= β (F(q)− F(p))

(6.1)
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