

Relaxation-Aware Heuristics Fulya Trösser

Introduction Preliminarie CSP WCSP

Contributions VAC-integrality Variable Ordering UB Computation

Results

Future Work

References

Relaxation-Aware Heuristics for Exact Optimization in Graphical Models

Fulya Trösser ¹, Simon de Givry ¹, George Katsirelos ²

¹INRA MIA Toulouse

²INRA MIA Paris

5 December 2019

Journée AIGM 2019

Overview

Relaxation-Aware Heuristics

Introduction

2 Preliminaries

- Constraint Satisfaction Problem
- Weighted Constraint Satisfaction Problem
- Local Consistency

3 Contributions

- VAC-integrality
- Variable Ordering Heuristic
- RASPS for UB Computation
- 4 Numerical Results
- 5 Future Work
- 6 References

Introduction

Relaxation-Aware Heuristics Fulya Trössel

Introduction

- Preliminaries CSP WCSP Local Consistency Contributions
- VAC-integrality Variable Ordering
- Results
- Future Work
- References

- Exact solvers for optimization problems on graphical models (CFN, MRF etc), typically use branch-and-bound.
- Two main factors: quality of the bound at each node and branching heuristics.
- Virtual Arc Consistency (VAC) algorithm: high quality bounds, but at a significant cost

Introduction

Relaxation-Aware Heuristics Fulya Trösser

Introduction

- Preliminaries CSP WCSP Local Consistency
- Contributions VAC-integrality Variable Ordering UB Computation
- Results
- Future Work
- References

- Branching heuristics ignore the information that VAC produces on the linear relaxation of the problem
- Branching heuristic may make decisions that are clearly ineffective
- By eliminating these ineffective decisions, we significantly reduce the size of the branch-and-bound tree.

Constraint Satisfaction Problem (CSP)

Relaxation-Aware Heuristics Fulya Trösser

Introduction Preliminaries CSP WCSP

Local Consistency

Contributions VAC-integrality Variable Ordering UB Computation

Results

Future Work

References

A Constraint Satisfaction Problem [Cooper and Schiex, 2004] is a triple $\langle X, D, C \rangle$.

- X: set of n variables $X = \{1, \ldots, n\}$.
- D: set of domains $D = \{D_i : i \in X\}.$
- C: set of constraints.

A tuple t

is a *solution* iff it satisfies all the constraints in C.

Cost Function

Relaxation-Aware Heuristics Fulya Trössel

Introduction

Preliminaries ^{CSP} WCSP

Contributions VAC-integrality Variable Ordering UB Computation

Results

Future Work

References

A cost function is defined over the scope S of the constraint c_S to which it corresponds. It associates a cost to each tuple $t \in \ell(S)$.

- c_{\varnothing} : the nullary cost function = constant cost.
- *c_i*: the unary cost function on variable *i*.
- c_{ij} : the binary cost function on variables *i* and *j*.

x	<i>c</i> _x	у
а	0	а
b	2	b

 C_{v}

0

x	y	c _{xy}
а	а	0
а	b	1
b	а	0
b	b	3

Weighted Constraint Satisfaction Problem

Relaxation-Aware Heuristics Fulya Trösse

Introduction Preliminaries ^{CSP} WCSP

Local Consistency

- Contributions VAC-integrality Variable Ordering UB Computation
- Results
- Future Work
- References

Weighted Constraint Satisfaction Problem (WCSP)

is a quadruple $\langle X, D, C, m \rangle$ where C is a set of cost functions and m is the upper bound [Cooper et al., 2010].

Find a solution such that the sum

$$c_{arnothing} + \sum_{i \in X} c_i + \sum_{ij \in X^2} c_{ij}$$

■ is less than the upper bound *m*.

Levels of Local Consistency

Relaxation-Aware Heuristics Fulva Trössel

Introduction Preliminaries CSP WCSP Local Consistency

Contributions VAC-integrality Variable Ordering UB Computation Results

Future Work

References

Node Consistency (NC)

A WCSP is *Node Consistent* if for any variable $i \in \{1, ..., n\}$, $\exists a \in D_i$ such that $c_i(a) = 0$

(Soft) Arc Consistency (SAC)

A binary WCSP is Arc Consistent if for all $c_{xy} \in C$ we have: $\forall a \in D_x$, $\exists b \in D_y$ such that $c_{xy}(a, b) = 0$.

Levels of Local Consistency

Relaxation-Aware Heuristics Fulva Trösser

Introduction Preliminaries CSP WCSP Local Consistency

Contributions VAC-integrality Variable Ordering UB Computation

Results

Future Work

References

Bool(P)

Values with non-zero unary cost \Rightarrow *REMOVED* Assignments with non-zero binary cost \Rightarrow *FORBIDDEN*

Virtual Arc Consistency

A WCSP P is virtual arc consistent (VAC) if Bool(P) is arc consistent.

Strict Arc Consistency vs VAC-integrality

Relaxation-Aware Heuristics Fulva Trössel

Introduction

Preliminaries CSP WCSP

Contributions VAC-integrality Variable Ordering UB Computation

Results

Future Work

References

Strict AC [Savchynskyy et al., 2013]

• a **unique** value
$$a \in D_i$$
 such that $c_i(a) = 0$

• $\forall c_{ij} \in C$, a **unique** tuple $\{(i, a), (j, b)\}$ which satisfies $c_{ij}(a, b) = 0$

VAC-integrality

- a **unique** value $a \in D_i$ such that $c_i(a) = 0$
- $\forall c_{ij} \in C$, at least one tuple $\{(i, a), (j, b)\}$ which satisfies $c_{ij}(a, b) + c_j(b) = 0$.

Strict Arc Consistency vs VAC-integrality

Variable Ordering Heuristic

Relaxation-Aware Heuristics Fulya Trösser

Introduction

Preliminaries CSP WCSP Local Consistency Contributions

Variable Ordering

Results

Future Work

References

- It makes sense to AVOID branching on VAC-integral variables, since the dual bound will not be improved.
- So, we classify the variables with respect to their domain sizes in Bool(P): those with singleton domains, and the rest.

 Then, we give priority to the variables with more than one value.

Heuristic for UB Inspired by CombiLP

- Relaxation-Aware Heuristics Fulya Trösse
- Introduction
- Preliminaries CSP
- WCSP
- Local Consistency
- Contributions VAC-integrality Variable Ordering UB Computation
- Results
- Future Work
- References

- [Haller et al., 2018] develop an approach called CombiLP
- Subproblem is constructed by fixing the variables that have the same value in the incumbent and in the current relaxation.
- Following this approach, we propose a primal heuristic which runs in preprocessing.

Relaxation-Aware Sub-Problem Search (RASPS)

RASPS

Relaxation-Aware Heuristics Fulya Trösse

Introduction

Preliminarie CSP WCSP

Local Consistency

Contributions VAC-integrality Variable Ordering UB Computation

Results

Future Work

References

Figure: WCSP P. OPT = $\{a, a, b, c, a\}$ with total cost 1.

Figure: $\theta = 1$, {*a*, *a*, *b*, *a*, *a*} with total cost 2.

Figure: $\theta = 2$, $\{a, a, b, c, a\}$ with total cost 1.

RASPS

Relaxation-Aware Heuristics Fulya Trösse

Introduction

CSP WCSP

Contributions VAC-integrality Variable Ordering UB Computation Results

Future Work

- θ_i: Threshold at iteration i of VAC
- r_i: Ratio of VAC-integral AC variables

$$\bullet \alpha_i = r_i/\theta_i$$

Experiments

Relaxation-Aware Heuristics Fulya Trösser

Introduction

Preliminaries ^{CSP} WCSP

Contributions VAC-integrality Variable Ordering UB Computation

Results

Future Work References

- ToulBar2 [Cooper et al., 2010]: an open-source exact solver for cost function networks that solves various combinatorial optimization problems.
- CombiLP [Haller et al., 2018]: an open-source algorithm for energy minimization of graphical models which uses ToulBar2 as its internal combinatorial solver.
- 431 instances from various benchmarks including
 - 21 instances from CPD
 - 30 instances from worms
- Time limit: 3600 seconds (36000 for CPD)

Numerical Results for Worms

Numerical Results for CPD

Number of solved CPD instances

Future Work

- Relaxation-Aware Heuristics Fulya Trösser
- Introduction
- Preliminarie _{CSP}
- WCSP
- Local Consistency
- Contributions VAC-integrality Variable Ordering UB Computation
- Results
- Future Work
- References

- Further exploring the connections between WCSP and ILP
- Finding ways of making VAC more useful more often in WCSP (so it could potentially become the default option)
- Testing these heuristics with Bayesian Network Structure Learning instances

References

Relaxation-Aware Heuristics ^Eulya Trösse

Introduction Preliminaries ^{CSP} WCSP

Local Consistency

Contributions VAC-integrality Variable Ordering UB Computation

Results

Future Work

References

Cooper, Martin and Schiex, Thomas (2004) Arc consistency for soft constraints *Artificial Intelligence* 154(1-2), 199 – 227.

Cooper, Martin C and De Givry, Simon and Sánchez, Martı and Schiex, Thomas and Zytnicki, Matthias and Werner, Tomáš (2010) Soft arc consistency revisited

Artificial Intelligence 174(7-8), 449 – 478.

Danna, Emilie and Rothberg, Edward and Le Pape, Claude (2005)
Exploring relaxation induced neighborhoods to improve MIP solutions
Mathematical Programming 102(1), 71 – 90.

Haller, Stefan and Swoboda, Paul and Savchynskyy, Bogdan (2018) Exact MAP-Inference by Confining Combinatorial Search with LP Relaxation AAAI

References

Relaxation-Aware Heuristics Fulya Trösser

Introduction

Preliminaries CSP WCSP Local Consistency Contributions

VAC-integrality Variable Ordering

UB Computatio

Results

Future Work

References

Savchynskyy, Bogdan and Kappes, Jörg Hendrik and Swoboda, Paul and Schnörr, Christoph (2013)

Global MAP-optimality by shrinking the combinatorial search area with convex relaxation

Advances in Neural Information Processing Systems 1950 - 1958.

Relaxation-Aware Heuristics Fulya Trösser

Introduction

Preliminaries CSP WCSP Local Consistency

Contributions VAC-integrality Variable Ordering UB Computation

Results

Future Work

References

Thank You