Modelling of the leaf appearance process or *phyllochron* with interval censored measurements

<u>Sandra Plancade</u>⁽¹⁾, Elodie Marchadier^(2,3), Sylvie Huet⁽¹⁾, Adrienne Ressayre⁽²⁾, Christine Dillmann^(2,3)

(1) Unité MaIAGE, INRA, (2) Génétique Quantitative et Évolution - Le Moulon INRA, Université Paris-Sud,

CNRS, AgroParisTech

5 december 2019

4		◀ 🗗	< ₹ >	< ₹ >	₹	4)Q(¥
						1/39
<u>Sandra Plancade⁽¹⁾,</u> Elodie Marchadier ⁽² Modelling of the leaf appearance proces	ss (5	decem	ber 201	9	1 / 39

1 Applied context : leaf appearance process or *phyllochron*

- 2 General modelling of phyllochron
- 3 First parametrisation : gaussian distribution
- 4 Work in progress : Semi-Markov models
- 5 Conclusion

▲ □	▶ ◀ 🗗	- ₹ ₹ ►	- ₹ ₹ ►	-≣ *) Q (*
					2/39
Sandra Plancade ⁽¹⁾ , Elodie Marchadier ⁽² Modelling of the leaf appearance process of		5 decen	nber 2019) 2	/ 39

Applied context : leaf appearance process or *phyllochron* The ITEMAIZE project

- 2 General modelling of phyllochron
- 3) First parametrisation : gaussian distribution
- Work in progress : Semi-Markov models
- 5 Conclusion

< ⊑		+ 🗗 🕨	∢≣≯	<.≣	•	Ð.	୬୯୯
							3/39
Sandra Plancade ⁽¹⁾ , Elodie Marchadier ⁽² Modelling of the leaf appearance process of	c		5 decer	nber	2019		3 / 39

Plant growth and development

• Growth and development : synchronized processes

I. A. Ciampitti *et al*,

Kansas State University (2013)

	٩ 🗆	A Q	1 🕨	.⊀ ≣ ⊁	- ₹ ₹	E	÷.,) Q (¥
								4/39
Sandra Plancade ⁽¹⁾	, Elodie Marchadier ⁽² Modelling of the leaf appearance process (5	5 decei	mber 2	2019	4	/ 39

Plant growth and development

• Growth and development : synchronized processes

I. A. Ciampitti et al,

Kansas State University (2013)

5 december 2019

- Modelling at various scales
 - Plot/field level
 - Plant level
 - Organ level
 - Cellular level
 - \hookrightarrow Stochastic % f(x) = 0 and deterministic model

Plant growth and development

• Growth and development : synchronized processes

I. A. Ciampitti *et al*,

Kansas State University (2013)

5 december 2019

クへで 4/39

4 / 39

- Modelling at various scales
 - Plot/field level
 - Plant level
 - Organ level
 - Cellular level
 - \hookrightarrow **Stochastic** and deterministic model
 - $\hookrightarrow \mathsf{Our} \mathsf{ model} : \mathbf{single \ phenotype}$

Sandra Plancade⁽¹⁾, Elodie Marchadier⁽²Modelling of the leaf appearance process of

Process of leaf appearance or phyllochron

• Phyllochron : times of leaf appearance on the plant/ interval of time between successive leaves

Process of leaf appearance or phyllochron

• Phyllochron : times of leaf appearance on the plant/ interval of time between successive leaves

5 / 39

Applied context : leaf appearance process or *phyllochron* The ITEMAIZE project

- 2 General modelling of phyllochron
 - Classic approach : thermal time
 - Alternative : stochastic process
- 3 First parametrisation : gaussian distribution
 - Model and estimation
 - Applications
 - Strengths and weaknesses of the model
- 4 Work in progress : Semi-Markov models
 - Semi-Markov model with interval censoring
 - Application to phyllochron
 - Perspectives

Conclusion

	=	•) ५ (•
		6/39
Sandra Plancade $^{(1)}$, Elodie Marchadier $^{(2)}$ Modelling of the leaf appearance process c 5 december 2019	9 (5 / 39

• Divergent selection of early/late flowering plants

\Rightarrow hierarchical grouping

5900

7 / 39

7/39

Sandra Plancade⁽¹⁾, Elodie Marchadier⁽²Modelling of the leaf appearance process c 5 december 2019

Applied context : leaf appearance process or phyllochron

2 General modelling of phyllochron

- Classic approach : thermal time
- Alternative : stochastic process

3 First parametrisation : gaussian distribution

Work in progress : Semi-Markov models

5 Conclusion

٩ 🗆 ١	• • 🗗	•	∢ ≣ ⊁	- ₹ ≣	•	₹ 4	$\mathcal{O} \mathcal{O} \mathcal{O}$
							8/39
Sandra Plancade ⁽¹⁾ , Elodie Marchadier ⁽² Modelling of the leaf appearance process (5	decer	nber	2019	8	/ 39

Applied context : leaf appearance process or *phyllochron* The ITEMAIZE project

- 2 General modelling of phyllochron
 - Classic approach : thermal time
 - Alternative : stochastic process
- 3 First parametrisation : gaussian distribution
 - Model and estimation
 - Applications
 - Strengths and weaknesses of the model
- 4 Work in progress : Semi-Markov models
 - Semi-Markov model with interval censoring
 - Application to phyllochron
 - Perspectives

Conclusion

	** * = * * = * = *	•) ५(•
		9/39
Sandra Plancade $^{(1)}$, Elodie Marchadier $^{(2}$ Modelling of the leaf appearance process (5 december 2019	9 / 39

• Idea : main driving factor of phyllochron is temperature

	ا 🗆 ا	▶ ◀@▶ ◀≧▶ ◀≧▶	E ୬९୯
			10/39
Sandra Plancade ⁽¹⁾ , Elodie Marchadier ⁽² Modelling of the lea	f appearance process (5 december 2019	10 / 39

- Idea : main driving factor of phyllochron is temperature
- TT = accumulation of temperature weighted by temperature efficiency
 - $\hookrightarrow \mathsf{time}\ \mathsf{rescaling}$

▲ □ ▶ ▲ 전 ▶ ▲ → ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■	Ē	ଚବଙ
		10/39
Sandra Plancade ⁽¹⁾ , Elodie Marchadier ⁽² Modelling of the leaf appearance process (5 december 2019	10	/ 39

- Idea : main driving factor of phyllochron is temperature
- TT = accumulation of temperature weighted by temperature efficiency
 - $\hookrightarrow \mathsf{time}\ \mathsf{rescaling}$
- Linear phyllochron : Leaf Number_p(t) = $\alpha_p TT_t + \varepsilon_{p,t}$
 - Inference of α_p by linear regression
 - F-test/mixed model on (α_p) to test genotype/environment effect
 - Linear asssumption : questionable

- Idea : main driving factor of phyllochron is temperature
- TT = accumulation of temperature weighted by temperature efficiency
 - $\hookrightarrow \mathsf{time}\ \mathsf{rescaling}$
- Linear phyllochron : Leaf Number_p(t) = $\alpha_p TT_t + \varepsilon_{p,t}$
 - Inference of α_p by linear regression
 - F-test/mixed model on (α_p) to test genotype/environment effect

5 december 2019

クへで 10/39

10 / 39

- Linear asssumption : questionable
- More flexible models : $LN_p(t) = f(TT_t) + \varepsilon_{p,t}$, $\varepsilon_{p,t}$ i.i.d.
 - bi/tri-linear, splines
 - Descriptive analysis
 - Statistical analysis (confidence interval, tests)
 - $\hookrightarrow \mathsf{auto-correlation} \Rightarrow \mathsf{bias}$

Sandra Plancade⁽¹⁾, Elodie Marchadier⁽²Modelling of the leaf appearance process of

Applied context : leaf appearance process or *phyllochron* The ITEMAIZE project

- 2 General modelling of phyllochron
 - Classic approach : thermal time
 - Alternative : stochastic process
- 3 First parametrisation : gaussian distribution
 - Model and estimation
 - Applications
 - Strengths and weaknesses of the model
- 4 Work in progress : Semi-Markov models
 - Semi-Markov model with interval censoring
 - Application to phyllochron
 - Perspectives

Conclusion

	=	4) Q (¥
		11/39
Sandra Plancade ⁽¹⁾ , Elodie Marchadier ⁽² Modelling of the leaf appearance process (5 december 201	9	11 / 39

Independent waiting times model

Consider a given genotype and a given year.

LN_p(t)= nb of leaves

 Realistic biological assumption : (Y_{p,f})_{f=1,...,F} independent

 $\left\{ \begin{array}{ll} \{LN_{p}(t)\}_{t>0} & \text{number of leaves} \\ (Z_{p,f})_{f} & \text{Times of leaf appearance} \\ (Y_{p,f})_{f} & \text{Interval between leaves} \end{array} \right.$

· · · · · · · · · · · · · · · · · · ·	1	१९७
		12/39
Sandra Plancade ⁽¹⁾ , Elodie Marchadier ⁽² Modelling of the leaf appearance process (5 december 2019	12	/ 39

Independent waiting times model

Consider a given genotype and a given year.

 $LN_n(t) = nb$ of leaves

 ${LN_p(t)}_{t>0}$ number of leaves $(Z_{p,f})_f$ Times of leaf appearance $(Y, c)_f$ Interval but Interval between leaves

• Realistic biological assumption : $(Y_{p,f})_{f=1,\dots,F}$ independent

< D >

$$Y_{p,f} = \mu_f + \varepsilon_{p,f}$$

999 12/39 Sandra Plancade⁽¹⁾, Elodie Marchadier⁽²Modelling of the leaf appearance process of 5 december 2019 12 / 39

Independent waiting times model

Consider a given genotype and a given year.

LN_p(t)= nb of leaves

 $\begin{array}{ll} \{LN_{\rho}(t)\}_{t>0} & \text{number of leaves} \\ (Z_{\rho,f})_{f} & \text{Times of leaf appearance} \\ (Y_{\rho,f})_{f} & \text{Interval between leaves} \end{array}$

- Realistic biological assumption : $(Y_{p,f})_{f=1,...,F}$ independent
- Flexible modelling :

$$Y_{p,f} = \mu_f + \varepsilon_{p,f}$$

• More generally

$$Y_{p,f} \sim \mathcal{D}(heta_f)$$

	이 이야 한 것 같 한 것 같 한 것	Ξ Ψ) ((Ψ
		12/39
<u>Sandra Plancade⁽¹⁾</u> , Elodie Marchadier ⁽² Modelling of the leaf appearance process c	5 december 2019	12 / 39

• Observations $(LN_{\rho}(t_{\rho,1}), \ldots, LN_{\rho}(t_{\rho,N_{\rho}}))$

4 □ ▶ 4	₫▶ ◀≧▶ ◀≧▶	∃ 𝒴𝔄
		13/39
Sandra Plancade ⁽¹⁾ , Elodie Marchadier ⁽² Modelling of the leaf appearance process of	5 december 2019	13 / 39

- Observations $(LN_p(t_{p,1}), \ldots, LN_p(t_{p,N_p}))$ $\Leftrightarrow Z_{p,f} \in (\nu_{p,f}, \tau_{p,f}], f = 1, \ldots, F_p$ with
 - ▶ v_{p,f} = last observation time before appearance of leaf f (or 0)
 - *τ_{p,f}* = first observation time after
 appearance of leaf *f* (or +∞)

	시 시대가 시골가 시골가	
		13/3
Sandra Plancade ⁽¹⁾ , Elodie Marchadier ⁽² Modelling of the leaf appearance process of	5 december 2019	13 / 39

- Observations $(LN_p(t_{p,1}), \ldots, LN_p(t_{p,N_p}))$ $\Leftrightarrow Z_{p,f} \in (\nu_{p,f}, \tau_{p,f}], f = 1, \ldots, F_p$ with
 - ▶ v_{p,f} = last observation time before appearance of leaf f (or 0)
 - *τ_{p,f}* = first observation time after
 appearance of leaf *f* (or +∞)
- Rk : Observations $\Leftrightarrow Y_{p,f} \in (\nu'_{p,f}, \tau'_{p,f}]$

4 🗆 🖡	· 《라이 《문》 《문》	≣ ≁)α(*
		13/3
Sandra Plancade ⁽¹⁾ , Elodie Marchadier ⁽² Modelling of the leaf appearance process (5 december 2019	13 / 39

- Observations $(LN_p(t_{p,1}), \ldots, LN_p(t_{p,N_p}))$ $\Leftrightarrow Z_{p,f} \in (\nu_{p,f}, \tau_{p,f}], f = 1, \ldots, F_p$ with
 - ▶ v_{p,f} = last observation time before appearance of leaf f (or 0)
 - *τ_{p,f}* = first observation time after
 appearance of leaf *f* (or +∞)
- Rk : Observations $\Leftrightarrow Y_{p,f} \in (\nu'_{p,f}, \tau'_{p,f}]$

Issue : estimation of the model from discrete measurements/ interval censored observations

٩ 🗅	🕨 🖣 🕨	이 씨들에 세?	E 🕨 🛛 🗄	り	(\mathcal{A})
					13/39
Sandra Plancade ⁽¹⁾ , Elodie Marchadier ⁽² Modelling of the leaf appearance process (5 december	2019	13	/ 39

Applied context : leaf appearance process or phyllochron

2 General modelling of phyllochron

First parametrisation : gaussian distribution

- Model and estimation
- Applications
- Strengths and weaknesses of the model

Work in progress : Semi-Markov models

5 Conclusion

٩ 🗆	🕨 🖣 🕨	▶ ▲ 콜 ▶ ▲	≣▶ - 3		$\mathcal{O}_{\mathcal{O}}$
					14/39
Sandra Plancade $^{(1)}$, Elodie Marchadier $^{(2)}$ Modelling of the leaf appearance process (5 december	2019	14	/ 39

Applied context : leaf appearance process or *phyllochron* The ITEMAIZE project

- 2 General modelling of phyllochron
 - Classic approach : thermal time
 - Alternative : stochastic process

First parametrisation : gaussian distribution

- Model and estimation
- Applications
- Strengths and weaknesses of the model

Work in progress : Semi-Markov models

- Semi-Markov model with interval censoring
- Application to phyllochron
- Perspectives

Conclusion

▲□▶ ▲@▶ ▲콜▶ ▲콜▶	≣ ≁)Q(Ψ
	15/39
Sandra Plancade ⁽¹⁾ , Elodie Marchadier ⁽² Modelling of the leaf appearance process (5 december 2019	15 / 39

The model

Consider a given genotype and a given year, for each plant p

$$\mathbf{Y}_{p} = (Y_{p,f})_{f=1,\dots,F_{p}} \sim \mathcal{N}_{F_{p}}(\mu, D), \quad D = \operatorname{diag}(\sigma^{2})$$

- $Y_{p,f} = \mu_f + \varepsilon_{p,f}, \quad \varepsilon_{p,f} \sim \mathcal{N}(0, \sigma_f^2)$
- Normality assumption for computing reasons

٩ 🗆	•	▲ 	E 🕨 👘	₹ 4	१९८
					16/39
Sandra Plancade ⁽¹⁾ , Elodie Marchadier ⁽² Modelling of the leaf appearance process of	c	5 december	2019	16	/ 39

The model

Consider a given genotype and a given year, for each plant p

$$\mathbf{Y}_{p} = (Y_{p,f})_{f=1,\dots,F_{p}} \sim \mathcal{N}_{F_{p}}(\mu, D), \quad D = \operatorname{diag}(\sigma^{2})$$

- $Y_{p,f} = \mu_f + \varepsilon_{p,f}, \quad \varepsilon_{p,f} \sim \mathcal{N}(0, \sigma_f^2)$
- Normality assumption for computing reasons
- $\Rightarrow \mbox{ Leaf appearance times } \textbf{Z}_{p} \sim \mathcal{N}(\overline{\mu}, \Sigma)) \mbox{ with } \Sigma \mbox{ not diagonal }$

٩ 🗆	▶ ◀ 🗗	▶ ▲ 문	▶ ◀ 큰 ▶	=	√) Q (¥
					16/39
Sandra Plancade ⁽¹⁾ , Elodie Marchadier ⁽² Modelling of the leaf appearance process of		5 decer	nber 2019)	16 / 39

Monte Carlo EM algorithm

- Latent variables : $(\mathbf{Y}_p)_p \Leftrightarrow (\mathbf{Z}_p)_p$
- Observed variables : $((\nu_{p,f}, \tau_{p,f})_f)_p$
- $\Theta = (\mu, \sigma)$

MLE of a univariate gaussian distributions

↓□▶ ↓ @▶ ↓ ₹▶ ↓ ₹▶	₹ 4	१७८
		17/39
Sandra Plancade ⁽¹⁾ , Elodie Marchadier ⁽² Modelling of the leaf appearance process (5 december 2019	17	/ 39

Monte Carlo EM algorithm

- Latent variables : $(\mathbf{Y}_p)_p \Leftrightarrow (\mathbf{Z}_p)_p$
- Observed variables : $((\nu_{p,f},\tau_{p,f})_f)_p$
- $\Theta = (\mu, \sigma)$

MLE of a univariate gaussian distributions

Sample from truncated multivariate distribution P[Z_p|Z_p ∈ [ν_p, τ_p)]
 → Basic rejection methods fail when dimension increases

4 🗆	•	£7 🕨	-∢ ≣ ⊁	₹ ►</th <th>3</th> <th>÷ 4</th> <th>१९७</th>	3	÷ 4	१९७
							17/3
Sandra Plancade ⁽¹⁾ , Elodie Marchadier ⁽² Modelling of the leaf appearance process of		5	decem	ber 2019	9	17	/ 39

Monte Carlo EM algorithm

- Latent variables : $(\mathbf{Y}_p)_p \Leftrightarrow (\mathbf{Z}_p)_p$
- Observed variables : $((\nu_{p,f},\tau_{p,f})_f)_p$
- $\Theta = (\mu, \sigma)$

MLE of a univariate gaussian distributions

- Sample from truncated multivariate distribution $\mathbb{P}[Z_p|Z_p \in [\nu_p, \tau_p)]$ \hookrightarrow Basic rejection methods fail when dimension increases
- Various methods for gaussian distribution
 - \hookrightarrow Package truncatedNormal, Botev (2016)

٩ 🗅	•	< 🗗 🕨	⊸ ≣⊅	• • ≣	•	E	$\mathfrak{I} \mathfrak{Q} \mathfrak{Q}$
							17/39
<u>Sandra Plancade$^{(1)}$</u> , Elodie Marchadier $^{(2)}$ Modelling of the leaf appearance process \mathfrak{c}		5	decen	nber 20	019	17	7 / 39

Applied context : leaf appearance process or *phyllochron* The ITEMAIZE project

- 2 General modelling of phyllochron
 - Classic approach : thermal time
 - Alternative : stochastic process

First parametrisation : gaussian distribution

- Model and estimation
- Applications
- Strengths and weaknesses of the model

Work in progress : Semi-Markov models

- Semi-Markov model with interval censoring
- Application to phyllochron
- Perspectives

Conclusion

▲ □ ▶ ▲ @ ▶ ▲ 콜 ▶ ▲ 콜 ▶	·	√) Q (¥
		18/39
Sandra Plancade ⁽¹⁾ , Elodie Marchadier ⁽² Modelling of the leaf appearance process (5 december 20)	19	18 / 39

Implementation on ITEMAIZE data

- Test genotypic group effect
- Test assumption of *linear phyllochron* i.e. $\mu_f = constant$
- Imput of climatic variables

Genotypic group effects

Model comparison

- (mod1) $(\mu_f, \sigma_f)_{f=f^{\min},...,f^{\max}}$ depend on genotype
- ► (mod0) (μ_f, σ_f)_{f=f^{min},...,f^{max}} same for all genotypes in the selection group

- Criteria based on likelihood : AIC, χ^2 -likelihood ratio test
 - Almost all tests are significant (some strongly)
 - Permutation test on one comparison
 - \hookrightarrow Results reliable even slightly over-estimated

◆□▶ ◆□▶ ◆□ ◆ ◆ ● ◆	- ₹ ≣ ⊁	≣ •Ω٩(<u>э</u>
		20/	39
Sandra Plancade ⁽¹⁾ , Elodie Marchadier ⁽² Modelling of the leaf appearance process (5 decem	ber 2019	20 / 39	9

Parametric submodels (Linear phyllochron?)

		< □ >	<⊡> <≣>	< ≣ > _	Ð,	୬ବ୍ଦ
						21/39
Sandra Plancade ⁽¹⁾ , Elodie Marc	nadier ⁽² Modelling of the leaf appearance p	rocess (5 decemb	er 2019	2	1 / 39

Parametric submodels (Linear phyllochron?)

- Various parametric models for $f \mapsto \mu_f$:
 - constant
 - linear
 - piecewise constant
 - piecewise linear

 ٢ 	▶◀@▶◀≣▶◀≣▶	≣ ୬९୯
		21/39
Sandra Plancade ⁽¹⁾ , Elodie Marchadier ⁽² Modelling of the leaf appearance process (5 december 2019	21 / 39
Parametric submodels (Linear phyllochron?)

- Various parametric models for $f \mapsto \mu_f$:
 - constant
 - linear
 - piecewise constant
 - piecewise linear
- Constant model (H0) vs each other model (H1) ($\chi^2\mbox{-likelihood ratio test}$ /AIC)

Sandra Plancade⁽¹⁾, Elodie Marchadier⁽²Modelling of the leaf appearance process c 5 december 2019 21 / 39

クへで 21/39

Parametric submodels (Linear phyllochron?)

- Various parametric models for $f \mapsto \mu_f$:
 - constant
 - linear
 - piecewise constant
 - piecewise linear
- Constant model (H0) vs each other model (H1) (χ^2 -likelihood ratio test /AIC)

21/39

Sandra Plancade⁽¹⁾, Elodie Marchadier⁽²Modelling of the leaf appearance process of

Input of climatic variables

< 🗆 >	· ▲@ ▶ ▲ ≣ ▶ ▲ ≣ ▶	₹ <i>•</i> ९९ (~
		22/39
Sandra Plancade ⁽¹⁾ , Elodie Marchadier ⁽² Modelling of the leaf appearance process (5 december 2019	22 / 39

- Regression of 7 climatic variable on μ : for each year and genotype
 - (1) Estimation of μ
 - (2) Regression of climatic variables on μ + variable selection

4 🗆	▶ ◀ 🗗	▶ ▲ 문 ▶ ▲ 문	► E	୬୯୯
				22/39
Sandra Plancade ⁽¹⁾ , Elodie Marchadier ⁽² Modelling of the leaf appearance process c		5 december 2	019 2	2 / 39

- Regression of 7 climatic variable on μ : for each year and genotype
 - (1) Estimation of μ
 - (2) Regression of climatic variables on μ + variable selection
 - \hookrightarrow No account for error of the estimate of μ

- Regression of 7 climatic variable on μ : for each year and genotype
 - (1) Estimation of μ
 - (2) Regression of climatic variables on μ + variable selection
 - \hookrightarrow No account for error of the estimate of μ
- Results : in progress

	< □ ▶	∢⊡≻ ∢≣⊁ ∢≣⊁	E ୬�Թ
			22/3
Sandra Plancade ⁽¹⁾ , Elodie Marchadier ⁽² Modelling of the leaf appearance	e process d	5 december 2019	22 / 39

Applied context : leaf appearance process or *phyllochron* The ITEMAIZE project

- 2 General modelling of phyllochron
 - Classic approach : thermal time
 - Alternative : stochastic process

3 First parametrisation : gaussian distribution

- Model and estimation
- Applications
- Strengths and weaknesses of the model
- Work in progress : Semi-Markov models
 - Semi-Markov model with interval censoring
 - Application to phyllochron
 - Perspectives

Conclusion

▲□▶ ▲@▶ ▲콜▶ ▲콜▶	=	≁) Q (¥
		23/39
Sandra Plancade $^{(1)}$, Elodie Marchadier $^{(2}$ Modelling of the leaf appearance process c 5 december 2019) :	23 / 39

Strengths of the model

Less biased modelling

Classic approach Leaf number :

$$LN(t) = f(TT_t) + \varepsilon_t$$

with $(\varepsilon_t)_t$ independent

 \hookrightarrow No account for auto-correlation

- More flexible modelling
- Allows to
 - Test conditions/genotypic effects
 - Select parametric models for μ
 - Evaluate climate effect

Sandra Plancade⁽¹⁾, Elodie Marchadier⁽²Modelling of the leaf appearance process of

Our model

Interval between successive leaves

 $Y_f \sim \mathcal{D}(\theta_f)$

with $(Y_f)_f$ independent. \hookrightarrow Independence : realistic

• • • • • • • • •

5 december 2019

かへで 24/39

24 / 39

- Large number of parameters
 - Price to pay for flexible model
 - Option : equal variance parameters within line

▲ □ ▶ < @ ▶ < \vee \vee \vee \vee \vee \vee \vee \v	÷.	୬୯୯
		25/39
Sandra Plancade ⁽¹⁾ , Elodie Marchadier ⁽² Modelling of the leaf appearance process (5 december 2019	2	5 / 39

- Large number of parameters
 - Price to pay for flexible model
 - Option : equal variance parameters within line
- Model comparison via likelihood : less flexible than mixed models

4 🗆	▶ ◀@▶ ◀콜▶ ◀콜▶	≣
		25/39
Sandra Plancade ⁽¹⁾ , Elodie Marchadier ⁽² Modelling of the leaf appearance process (5 december 2019	25 / 39

- Large number of parameters
 - Price to pay for flexible model
 - Option : equal variance parameters within line
- Model comparison via likelihood : less flexible than mixed models
- \bullet Plant level variation : gaussian distribution for a time-to-event $_{\sigma_{f}/\mu_{f}}$

▲ □ > ▲ @ > ▲ E > ▲ E	▶ E	୬ବ୍ଦ
		25/39
Sandra Plancade ⁽¹⁾ , Elodie Marchadier ⁽² Modelling of the leaf appearance process (5 december 2	019	25 / 39

- Large number of parameters
 - Price to pay for flexible model
 - Option : equal variance parameters within line
- Model comparison via likelihood : less flexible than mixed models
- \bullet Plant level variation : gaussian distribution for a time-to-event $_{\sigma_{f}/\mu_{f}}$

▲ □ > ▲ @ > ▲ E > ▲ E	▶ E	୬ବ୍ଦ
		25/39
Sandra Plancade ⁽¹⁾ , Elodie Marchadier ⁽² Modelling of the leaf appearance process (5 december 2	019	25 / 39

- Large number of parameters
 - Price to pay for flexible model
 - Option : equal variance parameters within line
- Model comparison via likelihood : less flexible than mixed models
- \bullet Plant level variation : gaussian distribution for a time-to-event $_{\sigma_f/\mu_f}$

- Longitudinal covariates
 - Regression on the phyllochron parameters μ
 - \neq include longitudinale covariate in the model

		25/39
Sandra Plancade $^{(1)}$, Elodie Marchadier $^{(2}$ Modelling of the leaf appearance process (5 december 2019	25 / 39

- Large number of parameters
 - Price to pay for flexible model
 - Option : equal variance parameters within line
- Model comparison via likelihood : less flexible than mixed models
- Plant level variation : gaussian distribution for a time-to-event $_{\sigma_{f}/\mu_{f}}$

- Longitudinal covariates
 - Regression on the phyllochron parameters μ
 - $\blacktriangleright \neq$ include longitudinale covariate in the model

			25/39
<u>Sandra Plancade⁽¹⁾, Elodie</u>	• Marchadier ⁽² Modelling of the leaf ap	pearance process c 5 dece	mber 2019 25 / 39

Applied context : leaf appearance process or phyllochron

- 2 General modelling of phyllochron
- First parametrisation : gaussian distribution
- Work in progress : Semi-Markov models
 - Semi-Markov model with interval censoring
 - Application to phyllochron
 - Perspectives

5 Conclusion

Applied context : leaf appearance process or *phyllochron* The ITEMAIZE project

- 2 General modelling of phyllochron
 - Classic approach : thermal time
 - Alternative : stochastic process
- 3 First parametrisation : gaussian distribution
 - Model and estimation
 - Applications
 - Strengths and weaknesses of the model
- Work in progress : Semi-Markov models
 - Semi-Markov model with interval censoring
 - Application to phyllochron
 - Perspectives

Conclusion

	- 2	4) Q (4
		27/39
Sandra Plancade $^{(1)}$, Elodie Marchadier $^{(2}$ Modelling of the leaf appearance process (5 december 2019) ;	27 / 39

• Semi Markov property : State and sojourn duration depends only on previous state and sojourn duration

$$\mathbb{P}[S_{[t+1:t+d]} = i | (S_{t'})_{t' \le t}] = \mathbb{P}[S_{[t+1:t+d]} = i | S_{[t-d'+1:t]} = j] := a_{(i,d)(j,d')}$$

	٩ 🗆	1 🕨 -	◀ 🗗 🕨 ┥ 🕻	≣ ⊁ ∢	-≣ ►	Ē	୬୯୯
							28/39
Sandra Plancade ⁽¹⁾	, Elodie Marchadier ⁽² Modelling of the leaf appearance process (c	5 dec	embe	r 2019	2	8 / 39

• Semi Markov property : State and sojourn duration depends only on previous state and sojourn duration

$$\mathbb{P}[S_{[t+1:t+d]} = i | (S_{t'})_{t' \le t}] = \mathbb{P}[S_{[t+1:t+d]} = i | S_{[t-d'+1:t]} = j] := a_{(i,d)(j,d')}$$

with $\{S_{[t+1:t']} = i\} = \{S_{t+1} = \dots = S_{t'} = i, S_t \neq i, S_{t'+1} \neq i\}$

· · · · · · · · · · · · · · · · · · ·	=	φ) Q (ψ
		28/39
Sandra Plancade ⁽¹⁾ , Elodie Marchadier ⁽² Modelling of the leaf appearance process (5 december 2019	2	8 / 39

• Semi Markov property : State and sojourn duration depends only on previous state and sojourn duration

$$\mathbb{P}[S_{[t+1:t+d]} = i | (S_{t'})_{t' \le t}] = \mathbb{P}[S_{[t+1:t+d]} = i | S_{[t-d'+1:t]} = j] := a_{(i,d)(j,d')}$$

with $\{S_{[t+1:t']} = i\} = \{S_{t+1} = \dots = S_{t'} = i, S_t \neq i, S_{t'+1} \neq i\}$

· · · · · · · · · · · · · · · · · · ·	=	φ) Q (ψ
		28/39
Sandra Plancade ⁽¹⁾ , Elodie Marchadier ⁽² Modelling of the leaf appearance process (5 december 2019	2	8 / 39

• Semi Markov property : State and sojourn duration depends only on previous state and sojourn duration

$$\mathbb{P}[S_{[t+1:t+d]} = i | (S_{t'})_{t' \le t}] = \mathbb{P}[S_{[t+1:t+d]} = i | S_{[t-d'+1:t]} = j] := a_{(i,d)(j,d')}$$

with $\{S_{[t+1:t']} = i\} = \{S_{t+1} = \dots = S_{t'} = i, S_t \neq i, S_{t'+1} \neq i\}$

• Unidirectional SMM = transition only from i to i + 1

· · · · · · · · · · · · · · · · · · ·	÷.	୶ୡ୕୲ୖ
		28/39
Sandra Plancade ⁽¹⁾ , Elodie Marchadier ⁽² Modelling of the leaf appearance process (5 december 2019	2	8 / 39

• Semi Markov property : State and sojourn duration depends only on previous state and sojourn duration

$$\mathbb{P}[S_{[t+1:t+d]} = i | (S_{t'})_{t' \le t}] = \mathbb{P}[S_{[t+1:t+d]} = i | S_{[t-d'+1:t]} = j] := a_{(i,d)(j,d')}$$

with $\{S_{[t+1:t']} = i\} = \{S_{t+1} = \dots = S_{t'} = i, S_t \neq i, S_{t'+1} \neq i\}$

• Unidirectional SMM = transition only from i to i + 1

 $\bullet\,$ Phyllochron : sojourn time independent of time in previous state :

$$a_{(i,d)(j,d')} = \mathbbm{1}_{i=j+1}f_i(d) \quad ext{with} \quad f_i(d) = \mathbb{P}[Y_i = d].$$

▲□▶ ▲@▶ ▲콜▶ ▲콜▶	三 つつ	2 (°
	2	8/39
Sandra Plancade ⁽¹⁾ , Elodie Marchadier ⁽² Modelling of the leaf appearance process (5 december 2019	28 /	39

• Semi Markov property : State and sojourn duration depends only on previous state and sojourn duration

$$\mathbb{P}[S_{[t+1:t+d]} = i | (S_{t'})_{t' \le t}] = \mathbb{P}[S_{[t+1:t+d]} = i | S_{[t-d'+1:t]} = j] := a_{(i,d)(j,d')}$$

with $\{S_{[t+1:t']} = i\} = \{S_{t+1} = \dots = S_{t'} = i, S_t \neq i, S_{t'+1} \neq i\}$

• Unidirectional SMM = transition only from i to i + 1

• Phyllochron : sojourn time independent of time in previous state :

$$a_{(i,d)(j,d')} = \mathbbm{1}_{i=j+1}f_i(d)$$
 with $f_i(d) = \mathbb{P}[Y_i = d].$

かくで 28/39

 \hookrightarrow If f_i geometric : Poisson point process

Sandra Plancade⁽¹⁾, Elodie Marchadier⁽²Modelling of the leaf appearance process (5 december 2019 28 / 39

٩ 🗆	•	• 🗗 🕨	∢ ≣ ⊁	•	E 🕨 👘	Ð.	590
							29/3
Sandra Plancade ⁽¹⁾ , Elodie Marchadier ⁽² Modelling of the leaf appearance process of	c	5	decem	ber :	2019	2	9 / 39

Hidden SMM

• $(S_t)_{t=1,...,T_{max}}$ unobserved SMM

	٩ 🗆	1 🕨	+ 🗗 🕨	∢ ≣ ⊁	⊀≣⊁ -	E	୬୯୯
							29/39
Sandra Plancade ⁽¹⁾	, Elodie Marchadier ⁽² Modelling of the leaf appearance process o	c	5	decemb	per 2019	2	29 / 39

Hidden SMM

• $(S_t)_{t=1,...,T_{max}}$ unobserved SMM • $(O_t)_{t=1,...,T_{max}}$ observed process with

$$\mathbb{P}[O_t = x | (S_{t'})_{t'}, (O_{t'})_{t' \neq t}]$$

$$= \mathbb{P}[O_t = x | S_t = j] = b_j(x)$$

$$\hookrightarrow b_j(\cdot) =$$
emission proba in state j .

			= .	-	.)
					29/39
Sandra Plancade ⁽¹⁾ , Elodie Marchadier ⁽² Modelling of the leaf appearance process of	c	5 decer	nber 2019	2	9 / 39

Hidden SMM

• $(S_t)_{t=1,...,T_{max}}$ unobserved SMM • $(O_t)_{t=1,...,T_{max}}$ observed process with

$$\mathbb{P}[O_t = x | (S_{t'})_{t'}, (O_{t'})_{t' \neq t}]$$

$$= \mathbb{P}[O_t = x | S_t = j] = b_j(x)$$

$$\hookrightarrow b_j(\cdot) =$$
emission proba in state j .

かへで 29/39

29 / 39

Sandra Plancade⁽¹⁾, Elodie Marchadier⁽²Modelling of the leaf appearance process (5 december 2019

SMM with interval censoring : analogy with $\ensuremath{\mathsf{HSMM}}$

• Interval censoring :

$$\begin{cases} (S_t)_{t=1,dots,T_{\max}} \\ (t_1,\ldots,t_N) \\ (t_i,S_{t_i})_{i=1,\ldots,N} \end{cases}$$

SMM monitoring times Observations

 ٢ 	▶ ◀@▶ ◀ె₽▶ ◀ె₽	≣ ୬९୯
		30/39
Sandra Plancade ⁽¹⁾ , Elodie Marchadier ⁽² Modelling of the leaf appearance process (5 december 2019	30 / 39

Interval censoring :

 $\begin{cases} (S_t)_{t=1,dots,T_{\max}} \\ (t_1,\ldots,t_N) \\ (t_i,S_{t_i})_{i=1,\ldots,N} \end{cases}$

- SMM monitoring times Observations
- $(O_t)_t$ observed process (determ. given $(S_t)_t$)

$$O_t = \begin{cases} S_t & \text{if } t \in \{t_1, \dots, t_N\} \\ 0 & \text{otherwise} \end{cases}$$

• =		· L. ·	1 - 1		_	240
						30/3
Sandra Plancade ⁽¹⁾ , Elodie Marchadier ⁽² Modelling of the leaf appearance process	c	5	decem	per 2019	3	30 / 39

Interval censoring :

 $\begin{cases} (S_t)_{t=1,dots,T_{max}} & \text{SMM} \\ (t_1,\ldots,t_N) & \text{monit} \\ (t_i,S_{t_i})_{i=1,\ldots,N} & \text{Observed} \end{cases}$

- monitoring times Observations
- $(O_t)_t$ observed process (determ. given $(S_t)_t$)

$$O_t = \begin{cases} S_t & \text{if } t \in \{t_1, \dots, t_N\} \\ 0 & \text{otherwise} \end{cases}$$

• Algorithm forward/backward : very similar to HSMM

٩ 🗆	1 🕨 🔺 d	57 🕨 ৰ	≣⊁	< ≣ ≻	2	$\mathcal{O} \land \mathcal{O}$
						30/39
Sandra Plancade ⁽¹⁾ , Elodie Marchadier ⁽² Modelling of the leaf appearance process of	1	5 de	ecemb	er 2019	30) / 39

Applied context : leaf appearance process or *phyllochron* The ITEMAIZE project

- 2 General modelling of phyllochron
 - Classic approach : thermal time
 - Alternative : stochastic process
- 3 First parametrisation : gaussian distribution
 - Model and estimation
 - Applications
 - Strengths and weaknesses of the model
- Work in progress : Semi-Markov models
 - Semi-Markov model with interval censoring
 - Application to phyllochron
 - Perspectives

Conclusion

· · · · · · · · · · · · · · · · · · ·	≣ ¥)Q(¥
	31/39
Sandra Plancade ⁽¹⁾ , Elodie Marchadier ⁽² Modelling of the leaf appearance process (5 december 2019	31 / 39

Application to phyllochron : flexible distribution

- Support $[\![1,D]\!]$
- Beta-binomiale with offset : $\kappa + \mathcal{BB}(\text{size} = n, \text{prob} = \pi, \rho)$, $n + \kappa \leq D$

5 december 2019

32 / 39

Sandra Plancade⁽¹⁾, Elodie Marchadier⁽²Modelling of the leaf appearance process (

Ex : results for group F-late

Sandra Plancade⁽¹⁾, Elodie Marchadier⁽²Modelling of the leaf appearance process c 5 december 2019

シへで 33/39 33 / 39

Ex : results for group F-late

Sandra Plancade⁽¹⁾, Elodie Marchadier⁽²Modelling of the leaf appearance process of

33/39 5 december 2019 33 / 39

5900

Longitudinal covariate in unidir. SMM w. interval censoring

Longitudinal covariate in unidirectional SMM with interval censoring

• **X** = (X_t)_{t=1:T_{max}} longitudinal covariate observed at all times

	٩ 🗖	•	• 🗗 🕨	-∢ ≣ ⊁	- 4 ≣ ⊁	1	୬ବ୍ତ
							34/39
Sandra Plancade ⁽¹⁾	Elodie Marchadier ⁽² Modelling of the leaf appearance process of		5	decem	ber 2019		34 / 39

Longitudinal covariate in unidir. SMM w. interval censoring

Longitudinal covariate in unidirectional SMM with interval censoring

• **X** = (X_t)_{t=1:T_{max}} longitudinal covariate observed at all times

•
$$\mathbb{P}[Y_{j+1} = d | Y_1, \dots, Y_j, \mathbf{X}] =$$

 $\mathbb{P}[Y_{j+1} = d | X_{t+1:t+d}] = a_{j,d}(t)$

▲ □	•	◀ 🗗 🕨 🖣	≣⊁ ∢	三 🕨	Ē `	ଚବଙ
						34/39
Sandra Plancade ⁽¹⁾ , Elodie Marchadier ⁽² Modelling of the leaf appearance process	c	5 de	cembe	r 2019	34	/ 39

Longitudinal covariate in unidir. SMM w. interval censoring

Longitudinal covariate in unidirectional SMM with interval censoring

• **X** = (X_t)_{t=1:T_{max}} longitudinal covariate observed at all times

•
$$\mathbb{P}[Y_{j+1} = d | Y_1, \dots, Y_j, \mathbf{X}] =$$

 $\mathbb{P}[Y_{j+1} = d | X_{t+1:t+d}] = a_{j,d}(t)$

Exple. Discrete time Cox model

٩ 🗆	•	<∄≻ <≣≻ <≣	•	e り	9, (~
				3	34/39
Sandra Plancade ⁽¹⁾ , Elodie Marchadier ⁽² Modelling of the leaf appearance process of	c	5 december 2	2019	34 /	39
Applied context : leaf appearance process or *phyllochron* The ITEMAIZE project

- 2 General modelling of phyllochron
 - Classic approach : thermal time
 - Alternative : stochastic process
- 3 First parametrisation : gaussian distribution
 - Model and estimation
 - Applications
 - Strengths and weaknesses of the model

Work in progress : Semi-Markov models

- Semi-Markov model with interval censoring
- Application to phyllochron
- Perspectives

Conclusion

	지 문 에 문 에 문 에	≣ *)५(*
		35/39
Sandra Plancade ⁽¹⁾ , Elodie Marchadier ⁽² Modelling of the leaf appearance process (december 2019	35 / 39

- Improve numerical implementation (general SMM w. interval censoring)
 - $\hookrightarrow \mathsf{Issues \ similar \ to} \ \mathsf{HSMM}$
- Penalized likelihood
 - Flexible distribution (splines, etc)
 - Several longitudinal covariates
- Multi-chain SMM
 - $\hookrightarrow \mathsf{Application}:\mathsf{floral}\;\mathsf{transition}$

Applied context : leaf appearance process or phyllochron

- 2 General modelling of phyllochron
- 3 First parametrisation : gaussian distribution
- 4 Work in progress : Semi-Markov models
- **5** Conclusion

< □ > < @ > < 注 >	<≣>	₹ 4	୨୯୯
			37/39
Sandra Plancade ⁽¹⁾ , Elodie Marchadier ⁽² Modelling of the leaf appearance process (5 decemb	ber 2019	37	/ 39

Phyllochron modelling

- Flexible average phyllochron
 - $\hookrightarrow \mathsf{Enlighten} \ \mathsf{temporal} \ \mathsf{trends}$
- Downstream analysis : less tractable than classic linear phyllochron
- Stochastic process vs regression models
 - Other fields e.g. plant pathogens (Nemis et al 2013)

Semi-Markov model with interval censoring

- More flexible framework for phyllochron
 - Any parametric distribution
 - Longitudinal covariate (unidirectional SMM)
- General interest
 - ► SMM with interval censoring : almost not adressed in literature
 - Application in various fields (disease progression...)
- Algorithm analogous to Hidden SMM
 - Adapt methods for HSMM to interval censored SMM

< د	⊐ ►	🔸 🗗 🕨	∢ 臣 ⊁	- € ►	1	୬୯୯
						39/39
Sandra Plancade ⁽¹⁾ , Elodie Marchadier ⁽² Modelling of the leaf appearance process	c	5	decem	ber 2019	93	9 / 39