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Proteins - Folding problem

Reaction catalysis,
— DNA replication,
molecule transport,

3D structure Function
(backbone + side-chains)

Amino Acid sequence
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Proteins - Folding problem

Reaction catalysis,
— DNA replication,
molecule transport,

3D structure Function

Amino Acid sequence (backbone + side-chains)

Side chains have different conformations
Side-chains (rotamers)

Backbone

Change function
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Computational Protein Design

Function —

Protein Design : Inverse folding problem
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Computational Protein Design

Function —

Protein Design : Inverse folding problem

N positions Search space

= =
20 amino acids per positions 20N sequences
(=~ 400 rotamers) (~400N conformations)

— Need for computational methods to explore and prune the search space
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Inverse folding problem

ADOE
m 3D Structure (protein backbone) % N ge, o9,
L

= Rotamer library (amino acids and all their conformations)
= Energy function E
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Inverse folding problem

ADOE
m 3D Structure (protein backbone) %J g@, o9,
el — 5

= Rotamer library (amino acids and all their conformations)
= Energy function E

Minimum energy = Maximum stability

Given x sequence of rotamers (amino acids + conformations) :
p(x) =exp(=BE(X))

p= k?jT' kg Boltzmann constant
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Inverse folding problem

~DOOE
m 3D Structure (protein backbone) ﬁi ga, o9,
- 3
L

= Rotamer library (amino acids and all their conformations)
= Energy function E

Minimum energy = Maximum stability

Given x sequence of rotamers (amino acids + conformations) :
p(x) =exp(=BE(X))

p= kE]T' kg Boltzmann constant

We want :

X" = argm)?xp(x) =arg mxin E(x)
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Cost Function Networks

Cost Function Network (X, D, &)

= X =(Xq,...,Xn) set of variables, each with domain D; e D

. . E D; —  [I0,00l]
m & set of unary and binary cost functions Ei,j . Dox Dj ~  [10,00l]
m Cost of a solution X=xq...Xp :

E(X)=E¢+ Z E,'(X,')+ Z E,'j(X,',Xj)

1<isn 1<i<jsn

D. Allouche et al. (2014) Computational protein design as an optimization problem. In : Artif. Intell. Vol. 212. pp 59-79
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Cost Function Networks

Cost Function Network (X, D, &)

m X =(Xq,...,Xn) set of variables, each with domain D; € D

A . E,' : D,' = [|0v°0|]
= & set of unary and binary cost functions E; : DixD — [0l
m Cost of a solution X=Xy ...Xp :

E(x)=Eg+ Z Ei(xj)+ Z E,'j(X,',X/')

1<isn 1<i<jsn

= Markov Random Field

X =(Xy,...,Xn) set of variables, each with domain D; e D

i X ®j = e*ﬁEi
@ set of unary and binary potentials _BE;;

?ij e
Potential of a solution x=xq...xp :

pX)=pgx [ @i(x)x [1 ¢j(xix)

1<isn 1<i<jsn
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Cost Function Networks

Cost Function Network (X, D, &)

= X =(Xq,...,Xn) set of variables, each with domain D; e D

m & set of unary and binary cost functions 5’ D-eiD- : ngH
i P )

m Cost of a solution X=xq...Xp :

E(X)=E¢+ Z E,'(X,')+ Z E,'j(X,',Xj)

1<isn 1<i<jsn

GEC TG
= j’ One variable per position
- \.)

(x) Domain = available rotamers
/ | Cost functions = unary and binary energy
(= %) terms

Global Minimum Energy Conformation (GMEC) : x* = arg mir}( E(x)
xeDr

ANP-complete

D. Allouche et al. (2014) Computational protein design as an optimization problem. In : Artif. Intell. Vol. 212. pp 59-79
December 6th, 2018
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{ Jo=0 toulbar2
T An exact solver for cost function networks
Hone Download Docunentation Publications

NEWS: new toulbar2 source repository on
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Presentation
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Exploring diversity of solutions

Global Minimum Energy Conformation (GMEC) : x* = arg mir}( E(x)
xeD:

BUT :
= Energy terms = approximations

m Energy fails at representing desirable properties other than stability

= There might be a better backbone for x
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Exploring diversity of solutions

Global Minimum Energy Conformation (GMEC) : x* = arg mir}( E(x)
xeD:

BUT :
= Energy terms = approximations

m Energy fails at representing desirable properties other than stability

= There might be a better backbone for x

— Set of diverse and good quality solutions
The sequence with the best properties is kept
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Diverse good quality solutions
Lagrangian relaxation

Regular language membership constraint
m Automaton
m Decomposition : counting variables

Multi-valued Decision Diagram
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Diverse good quality solutions
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Expressing diversity

(X, D, &) cost function network

Expressing diversity : Hamming distance

Let x = xq...Xn and x’ = x{ ...x], be two solutions.

n
d(x,x") = I; 1]aa(x,-)r"-aa()(,{)

— number of mutations (substitutions only) between x and x’
Let x} = {x',...,xM} be a set of M solutions :

A (1) = min{ d(x!, %)) |i % [11, M1}
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Expressing diversity

(X, D, &) cost function network

Expressing diversity : Hamming distance

Let x = xq...Xn and x’ = x{ ...x], be two solutions.

n
d(x,x") = ’; 1]aa(x,-)r"-aa()(,{)

— number of mutations (substitutions only) between x and x’
Let x} = {x',...,xM} be a set of M solutions :

A (1) = min{ d(x!, %)) |i % [11, M1}

dDISTANTMSET

M )
E(x))
=

{X}=argmin{ A({X})zd}

J

E. Hebrard et al. (2005) Finding diverse and similar solutions in constraint programming. AAAI. Vol. 5
A. KIRILLOV et al. (2015) Inferring M-best diverse labelings in a single one. In : Proceedings of the IEEE International Conference on

Computer Vision. p. 1814-1822
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dDISTANTMSET

M .
{X} =argmin ZE(X/) A(fx}) =d
J=1

E. Hebrard et al. (2005) Finding diverse and similar solutions in constraint programming. AAAL. Vol. 5.
A. KIRILLOV et al. (2015) Inferring M-best diverse labelings in a single one. In : Proceedings of the IEEE International Conference on

Computer Vision. p. 1814-1822
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dDISTANTMSET
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dDISTANTMSET

M .
{X} =argmin ZE(X/) A(fx}) =d
J=1

E. Hebrard et al. (2005) Finding diverse and similar solutions in constraint programming. AAAL. Vol. 5.

A. KIRILLOV et al. (2015) Inferring M-best diverse labelings in a single one. In : Proceedings of the IEEE International Conference on

Computer Vision. p. 1814-1822
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dDISTANTMSET

M .
{X} =argmin ZE(X/) A(fx}) =d
J=1

S\

E. Hebrard et al. (2005) Finding diverse and similar solutions in constraint programming. AAAL. Vol. 5.
A. KIRILLOV et al. (2015) Inferring M-best diverse labelings in a single one. In : Proceedings of the IEEE International Conference on

Computer Vision. p. 1814-1822
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dDISTANTMSET

M .
{X} =argmin ZE(X/) A(fx}) =d
J=1

\ / EA(S):{SO gt(;:r\zise

E. Hebrard et al. (2005) Finding diverse and similar solutions in constraint programming. AAAL. Vol. 5.
A. KIRILLOV et al. (2015) Inferring M-best diverse labelings in a single one. In : Proceedings of the IEEE International Conference on

Computer Vision. p. 1814-1822
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Assume s',...,sM-1 are computed solutions :

= Find optimum in cost function network with additional diversity constraints

— How do we express the diversity constraints ?

D. Batra et al. (2012). Diverse m-best solutions in markov random fields. In European Conference on Computer Vision (pp. 1-16). Springer,

Berlin, Heidelberg.
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Lagrangian relaxation
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Lagrangian Relaxation

dx,s")=d

(P)  E*=mn{E(X)} st

d(x,sM-1)>d
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Lagrangian Relaxation

dx,s")=d
(P) E*:mxin{E(x)} s.t.
d(x,sM-1)=d

q(A) = mm{E(x)—Z/ll( (x,¢/)- d)}
(D) Q" =maxq(})

M-1 M-1
q(xl):mxin{ ()~ Z(Z /aa(x,);éaa(s’)) Z Aid}

J=1
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Lagrangian Relaxation

dx,s")=d
(P) E*:mxin{E(x)} s.t.
d(x,sM-1)=d

q(A) = mm{E(x)—Z/ll( (x,¢/)- d)}

(D) Q= max q(A)

|
Il

(1) = Optimum CFN with unary penalties

M-1 M-1
q(xl):mxin{ ()~ Z(Z /aa(x,);éaa(s’)) Z Aid}

J=1

g : concave, piecewise differentiable — supergradient ascent

D. Batra et al. (2012). Diverse m-best solutions in markov random fields. In European Conference on Computer Vision (pp. 1-16). Springer,

Berlin, Heidelberg
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Supergradient ascent on g

.\ ) M-1 .
Q= mfxq(/l) = mfxmxln{ E(x)- /; A,(d(x,s/)—d) }

Idea :
m A too small — diversity constraint not satisfied
m A too high — problem too constrained : we might miss good quality solutions
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Supergradient ascent on g

.\ ) M-1 .
Q= mfxq(/l) = mfxmxln{ E(x)- /; A,-(d(x,s/)—d) }

Idea :
m A too small — diversity constraint not satisfied
m A too high — problem too constrained : we might miss good quality solutions

lteratively

Set A1=1g

Solve q(1) = minx { £(x) - =My (dxs)-a)}
Adjust A

@ Go to step 2 until stopping criterion is reached
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Supergradient ascent on g

.\ ) M-1 .
Q= mfxq(/l) = mfxmxln{ E(x)- /; A,-(d(x,s/)—d) }

Idea :
m A too small — diversity constraint not satisfied
m A too high — problem too constrained : we might miss good quality solutions

lteratively

Set A1=1g

Solve q(1) = minx { £(x) - =My (dxs)-a)}
Adjust A

@ Go to step 2 until stopping criterion is reached

? Step 3 : Stepsize to adjust A ? (several strategies investigated)
? Step 4 : Stopping criterion ?
? Correctness ? (duality gap)
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Lagrangian relaxation

Constant
Square summable, non summable
m Stepsize { Non summable diminishing

s

k 1
C’best_Q(/1 )+ ﬁ

Polyak
y llukl12

m Stopping criterion : empirical

Duality gap

The Hamming dissimilarity does not lead to a tight Lagrangian relaxation and may
leave a duality gap.

16/32
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Lagrangian relaxation

Constant
Square summable, non summable %
m Stepsize { Non summable diminishing \%E
Test =91+
Polyak best T
Ik 15

m Stopping criterion : empirical

Duality gap

The Hamming dissimilarity does not lead to a tight Lagrangian relaxation and may
leave a duality gap.

Datasets
m Bayesian Networks (alarm)
m Tree Structured Networks (mushroom)
m CPD instances (A-1A81)

S. Boyd et al. Subgradients. Lecture notes for EE364b, Stanford University, Spring 2014-15
D. Batra et al. (2012). Diverse m-best solutions in markov random fields. In European Conference on Computer Vision (pp. 1-16). Springer,
Berlin, Heidelberg.
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Preliminary results

Best dual value gbest_t

Manon Ruffini
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Regular language membership constraint
m Automaton
m Decomposition : counting variables
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Weighted Regular Constraint (WREGULAR)

Constraint based on the membership in a regular language, defined by an automaton.

Automaton

A deterministic finite state automaton is a quintuple (=, S, sg, 6, F) where :
= X is the input alphabet

1 1
= Qis afinite set of states 0
m sy e Qis an initial state
. " ) start —
= §: QxZX— Qis the state-transition function
0

= Fc Qis a set of final states
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Weighted Regular Constraint (WREGULAR)

Constraint based on the membership in a regular language, defined by an automaton.

Automaton

A deterministic finite state automaton is a quintuple (=, S, sg, 6, F) where :
= X is the input alphabet

1 1
= Qis afinite set of states 0
m sy e Qis an initial state
. " ) start —
= §: QxZX— Qis the state-transition function
0

= Fc Qis a set of final states

A word x e =* is accepted by the automaton if there exists a set of transitions from the
initial state s to a final state f labeled by the letters of x.
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Weighted Regular Constraint (WREGULAR)

In ToulBar2 :
m Global constraint described by an automaton
= Alphabet = domain values
m Costs on initial state, transition and final states

Ex : Diversity =3 from s = 5;...55

start >

All costs =0

Manon Ruffini INRA MIAT Diversity of MAP solutions in MRF December 6th, 2018 20/32



Decomposition of the regular constraint : Counting variables

For a solution s/ and minimum diversity value d : . '
= Set of additional variables Q;,..., Qn, with Q;=d(x7 ...x;, ] ...s]) Dg, = 10,0}
= Additional cost functions to ensure
Qi=Qi_1+1

aa(x;)#aa(s))
= Unary cost on Qn

@ @ @ 0 ifghn=d
° @ @ Eon(q”)z{ oo otherwise
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Decomposition of the regular constraint : Counting variables

For a solution s/ and minimum diversity value d : . '
= Set of additional variables Qy,..., Qn, with Q;=d(x; ...x;, s} ...s])  Dq =10,0}
= Additional cost functions to ensure

Qi=Qi_q+ ﬂaa(x,-)#aa(sf:)
= Unary cost on Qn

) |
°@@@ Ean(@={ 2 oammise

From ternary to binary functions : Hidden variable representation

e Dc,={{(q'0'q)

(g1,q+1) qEDQf}

© ®

Bessiéreet al. (2011). Decomposing global cost functions. Soft'11 - Principles and Practice of Constraint Programming (pp. 16-30).

J.Larrosa, R. Dechter (2000). On the dual representation of non-binary semiring-based CSPs. In CP’2000 workshop on soft constraints.
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Preliminary results
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Multi-valued Decision Diagram
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Multi-valued Decision Diagram

Modeling

(X,D,E) CFN; s =s4...8p solution

= Layered automaton

= One layer L; per variable X;

m Edge labeled v; from L; to L;, 1 = Assignment of X; to v;

m Each node u in layer L; has a state Iy = d(xq...Xj_1,51...Sj_1)
= Weights on edges

Diversity from several solutions (s/),; :

/u: (d(X1 ...X,'_1,SI1. ..485.'_1 ))j
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X = (X1, X2, X3, X4)
vi,D;=1{0,1,2,3}
s=1302 d=2

//g::l\\ -

0,230
10
//jijz\inzo 0,120
30 30
//jijz\Lzsi/S::Z\lzao 12,30
00 00 00

0,1,30

0,1,30 0,1,30 0,1,30
20

OO

20

©)
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X=(X1,X2, X3, X4)
Vi,D;=10,1,2,3)
s=1302 d=2
/®\
0,2,30
10
/®\
0,1,20 0,1,20
30 30
/®\ /@\
1,230 1,230 1,230
00 00 00
/@\ /®\
0,1,30 0,1,30 0,1,30 0,1,30
20 20 20 20

O O @ o ©
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X=(X1,X2, X3, X4)
Vi,D;=10,1,2,3)
s=1302 d=2
//g::l\\ -
0,2,30
10
//jijz\inzo 0,1,20
30 30
Lzsi/jijz\lzao 1,230
00 00 00

,30

1
20
0 0

0

0
200
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X=(X1,X2, X3, X4)
Vi,D;=10,1,2,3)
s=1302 d=2
/CSD\
0,2,30
10
/C%Lzo 0,1,20
30 30
1,2,30/<D‘2,3o
00 00 0

,30

1
20
0

O

0
200
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Multi-valued Decision Diagram

@-inverse consistency

@-IC

The MDD cost function is said to be strongly @-inverse consistent (strongly @-IC ) if
there exists a tuple x € Dy such that

MDD(x) + i Ei(x;)=0

i=1

For u node in layer L;, a*[u] = smallest path weight (with unary costs) from s
tou

( ) 0,1
0,1 %
1,0 Q 2,2 O 0,1 @

2.2 0,1
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Multi-valued Decision Diagram

@-inverse consistency

@-IC

The MDD cost function is said to be strongly @-inverse consistent (strongly @-IC ) if
there exists a tuple x € Dy such that

MDD(x) + i Ei(x;)=0

i=1

For u node in layer L;, a*[u] = smallest path weight (with unary costs) from s
tou

< : 0,1
0,1 %
1,0 OQ 2,2 O 0,1 @

2.2 0,1
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Multi-valued Decision Diagram

@-inverse consistency

@-IC
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Multi-valued Decision Diagram

@-inverse consistency

@-IC

The MDD cost function is said to be strongly @-inverse consistent (strongly @-IC ) if
there exists a tuple x € Dy such that

MDD(x) + i Ei(x;)=0

i=1

For u node in layer L;, a*[u] = smallest path weight (with unary costs) from s
tou

Equivalence preserving transformation
vx, MDD(x) = MDD(x) -2

E¢:E¢+2

Cooper, M. C., De Givry, S., Sanchez, M., Schiex, T., Zytnicki, M

Werner, T. (2010). Soft arc consistency revisited. Artificial Intelli-

gence, 174(7-8), 449-478
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Multi-valued Decision Diagram

Arc consistency

AC

The MDD cost function is arc consistent if for all Xj € X and all v; € Dy, there exists a
tuple x such that x[/] = v; and MDD(x) = 0.

afu]  smallest path weight from s to u
Blu]  smallest path weight from u to t

1,0@22@01@

2,2 0,1

For u node in layer L;,

Example : Xj=X5;vo =0

()on

3
5

0,1
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Multi-valued Decision Diagram

Arc consistency

AC

The MDD cost function is arc consistent if for all Xj € X and all v; € Dy, there exists a

tuple x such that x[/] = v; and MDD(x) = 0.

afu]  smallest path weight from s to u

RO TR I BT Blu]  smallest path weight from u to t

Example : Xj=X5;vo =0
1

QN

3
5

0,1

1,000 2,2 Q 0,1 @

2,2 0,1
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Multi-valued Decision Diagram

Arc consistency

AC

The MDD cost function is arc consistent if for all Xj € X and all v; € Dy, there exists a

tuple x such that x[/] = v; and MDD(x) = 0.

afu]  smallest path weight from s to u

RO TR I BT Blu]  smallest path weight from u to t

Example : Xj=X5;vo =0

1 0.4 0
0.1 %
0 1
(OO0
\_/

2,2 0,1
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Multi-valued Decision Diagram

Arc consistency

AC

The MDD cost function is arc consistent if for all Xj € X and all v; € Dy, there exists a
tuple x such that x[/] = v; and MDD(x) = 0.

afu]  smallest path weight from s to u

RO TR I BT Blu]  smallest path weight from u to t

Example : Xj=X5;vo =0
min{E(X) | xo =0}
=min(1+1+0,2+1+1)
=2
VX s.t. Xo =0, MDD(x) = MDD(x) -2
E»(0) = E»(0)+2

Cooper, M. C., De Givry, S., Sanchez, M., Schiex, T., Zytnicki, M

Werner, T. (2010). Soft arc consistency revisited. Artificial Intelli-

gence, 174(7-8), 449-478
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Complexity

(X,D,&) CFN; s',...,sM M solutions

0 if[ R d(x,sj))zd
1sjsm

Divmin(x,s1 L d)=
T otherwise
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Complexity

(X,D,&) CFN; s',...,sM M solutions

0 if[ R d(x,sj))zd
1sjsm
T otherwise

Divmin(x,s1,...,sM,d) =

‘ @-1C is NP-hard to propagate on Divy,ip- ‘

‘ AC is NP-hard to propagate on Div ;- ‘

E. Hebrard et al. (2005) Finding diverse and similar solutions in constraint programming. AAAI. Vol. 5.
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Preliminary results

Total computation Ume

smmd

[T —r—_
—— alarm_d1_sols50_emd sols
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000 | — A1A81_e s0ls50_emdd.sols
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Salution number

" siarm_ 5 501250 smad.cols

—— slarm_ 5201550 _emdd sols

Total computatin time.

2 »
Solution number

" mushroom_chow_lu_ds_solzs0_smdd sls
—— mushroom_chow_lu_dS_solsS0_emdd2.sols

2000

1000

Total computation time.

One MDD constraint per solution

emdd One MDD constraint for all solutions

Manon Ruffini

INRA MIAT

Diversity of MAP solutions in MRF

December 6th, 2018
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Multi-valued Decision Diagram

Relaxation

MDD width

With m solutions and diversity d, maximum MDD width = (d+1)™

‘ 10 solutions, d =5 == 60 million nodes per layer! ‘

= 1 MDD per solution = small width
m 1 MDD for all solutions = better propagation
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Multi-valued Decision Diagram

Relaxation

MDD width

With m solutions and diversity d, maximum MDD width = (d+1)™

‘ 10 solutions, d =5 == 60 million nodes per layer!

= 1 MDD per solution = small width
m 1 MDD for all solutions = better propagation

— Relaxation!

Relaxed MDD

Forall x,
MDDgjax (X) < MDD(x) 1)

Merging strategies :
rel1 Random nodes are merged
rel2 Nodes u with smallest div = Zd,E,u d are merged

Bergman, D,, Cire, A. A., Van Hoeve, W. J., Hooker, J. (2016). Decision diagrams for optimization. Springer International Publishing
December 6th, 2018 30/32
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Methods
m Lagrangian relaxation — duality gap!

m MDD constraint

= 1 constraint per solution
m 1 constraint for all — exponential !
m Relaxation ?

= Regular constraint

m REGULAR — worse than MDD
= Binary decomposition

To do
m Smaller search tree with relaxed MDD ?
m Better propagations on MDD constraint
m Use dissimilarity matrix in diversity measure
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Methods
m Lagrangian relaxation — duality gap!

m MDD constraint

= 1 constraint per solution
m 1 constraint for all — exponential !
m Relaxation ?

= Regular constraint

m REGULAR — worse than MDD
= Binary decomposition

To do
m Smaller search tree with relaxed MDD ?
m Better propagations on MDD constraint
m Use dissimilarity matrix in diversity measure

Thank you'!
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