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A d -dimensional contact process is a simplified model for the spread of
an infection on the lattice Zd . At any given time tP0, certain sites
x 2 Zd are infected while the remaining once are healthy. Infected sites
recover at constant rate 1, while healthy sites are infected at a rate
proportional to the number of infected neighboring sites. The model is
parametrized by the proportionality constant k. If k is sufficiently small,
infection dies out (subcritical process), whereas if k is sufficiently large
infection tends to be permanent (supercritical process).

In this paper we study the estimation problem for the parameter k of
the supercritical contact process starting with a single infected site at the
origin. Based on an observation of this process at a single time t , we
obtain an estimator for the parameter k which is consistent and asympto-
tically normal as t ! 1.
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1 The contact process: some properties

A d-dimensional contact process is a simplified model for the spread of a

biological organism or an infection on the d-dimensional lattice Zd. At each time

tP0, every point of the lattice (or site) is either infected or healthy. As time

passes, a healthy site is infected by each diseased site among its 2d immediate

neighbors with Poisson rate k; an infected site recovers and becomes healthy

with Poisson rate 1. The processes involved are independent. If the process starts

with a set A � Zd of infected sites at time t ¼ 0, then nAt will denote the set of

infected sites at time tP0 and fnAt : tP0g will denote the contact process. If

the starting set is chosen at random according to a probability distribution a
and independent of the further development of the process, then the process will

be written as fna
t : tP0g.

The first thing to note about the contact process is that starting with a non empty

set of infected sites at time t ¼ 0, the infection will eventually die out with
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probability 1 if kOkd for some critical value kd 2 (0, 1). The infection will

continue forever with positive probability if and only if k > kd. Such a process is

called supercritical. Thus, if we define the random hitting time

sA ¼ infft : nAt ¼ hg, A � Zd, (1)

with the convention that sA ¼ 1 if nAt 6¼ h for all tP0, then for the supercritical

contact process

P(sA ¼ 1) > 0 (2)

for every non-empty A � Zd. Moreover, if A has infinite cardinality jAj, then

P(sA ¼ 1) ¼ 1: (3)

In the supercritical case, it is easy to show that the process nZdt that starts with all

sites infected, converges in distribution to the so-called upper invariant measure

m ¼ mk. Here convergence in distribution means convergence of probabilities of

events defined by the behavior of the process on finite subsets of Zd, and ‘invariant’

refers to the fact that the process fnm
t : tP0g is stationary. In particular, the

distribution of nm
t is equal to m for all t. Obviously, m is also invariant under integer

valued translations of Zd. The long range behavior of the supercritical contact

process fnAt : tP0g for arbitrary non-empty A � Zd is described by the complete

convergence theorem which asserts that for k > kd and A � Zd

nAt �!
d

P(sA < 1)dh þ P(sA ¼ 1)mk: (4)

Here dh assigns probability 1 to the empty set. Thus, given that the process survives

forever, it converges in distribution to mk which depends on the dimension d and the

value of k, but not on the initial state A.

Next let us describe the so-called graphical representation of contact processes due

to HARRIS (1978). This is a particular coupling of all contact processes of a given

dimension d and with a given value of k, but with every possible initial state A or

initial distribution a. Consider space-time Zd 
 [0, 1). For every site x 2 Zd we

define on the line x
 [0, 1) a Poisson process with rate 1; for every ordered pair

(x, y) of neighboring sites in Zd we define a Poisson process with rate k. All of these

Poisson processes are independent.

We now draw a picture of Zd 
 [0, 1) where for each site x 2 Zd we remove the

points of the corresponding Poisson process with rate 1 from the line x
 [0, 1); for

each ordered pair of neighboring sites (x, y) we draw an arrow going perpendicularly

from the line x
 [0, 1) to the line y
 [0, 1) at the points of the Poisson process

with rate k corresponding to the pair (x, y). For any set A � Zd, define nAt to be the

set of sites that can be reached by starting at time 0 at some site in A and traveling to

time t along unbroken segments of lines x
 [0, 1) in the direction of increasing

time, as well as along arrows. Clearly, fnAt : tP0g is distributed as a contact process

with initial state A. By choosing the initial set at random with distribution a, we
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define fna
t : tP0g. The obvious beauty of this coupling is that for two initial sets of

infected sites A � B, we have nAt � nBt for all tP0.

The contact process has the property of self-duality. If, in the graphical representa-

tion, time is run backwards and all arrows representing infection of one site by

another, are reversed, then the new graphical representation has precisely the same

probabilistic structure as the original one. In particular

P(nAt \ B ¼ h) ¼ P(nBt \ A ¼ h), for all A, B � Zd and tP0: (5)

By an abuse of notation we shall write nAt for the indicator function of nAt as well as

for the set itself. Thus

n t(x) ¼
1 if x is infected at time t
0 if x is healthy at time t.

�
(6)

With this notation (5) yields for A ¼ f0g and B ¼ Zd,

P(sf0gOt) ¼ P(nZ
d

t (0) ¼ 0)

and letting t! 1, this reduces to

P(sf0g < 1) ¼ P(nm
t(0) ¼ 0)

because of the convergence in distribution of nZ
d

t to m. Combining these facts with an

exponential bound on the speed of this convergence (see DURRETT 1991, page 5) we

find

0OP(t < sf0g < 1) ¼ P(nm
t(0) ¼ 0)� P(nZdt (0) ¼ 0)OCe�c t (7)

For positive constants C and c and all tP0.

Another major result for the contact process is the shape theorem. From this point

on we shall assume that all contact processes are defined according to the graphical

construction. We shall also restrict attention to the supercritical case. In order to state

the shape theorem we need some notation. Let k:k denote the L1 norm on Rd,

that is

kxk ¼ max
1OiOd

jxij

for x ¼ (x1, . . . , sd) 2 Rd, and let Q ¼ fx 2 Rd : kxkO1=2g denote the unit hyper-

cube centered at the origin. For A, B � Rd, A� B ¼ fxþ y : x 2 A, y 2 Bg will

denote the direct sum of A and B and for real r, rA ¼ frx : x 2 Ag.
Define

Ht ¼
[
sO t

(nf0gs )� Q, (8)

Kt ¼ fx 2 Zd : nf0gt (x) ¼ nZdt (x)g � Q: (9)

Thus for the process fnf0gt : t P 0g that starts with a single infected site at the origin,

Ht is obtained by taking the union of the sites that have been infected up to or at

time t, and replacing these sites by unit hypercubes centered at these sites in order to
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fill up the space between neighboring sites. Similarly Kt is the filled-up version of the

set of sites where nf0gt and nZdt coincide. We have (see BEZUIDENHOUT and,

GRIMMETT 1990, DURRETT, 1991)

SHAPE THEOREM There exists a bounded convex subset U of Rd with the origin as

an interior point and such that for any e 2 (0, 1),

(1� e)U � t�1(Ht \ Kt) � t�1Ht � (1þ e)U, (10)

eventually almost surely on the event fsf0g ¼ 1g where nf0gt survives forever.

Roughly speaking the shape theorem asserts that, starting at the origin, the

infection spreads linearly like tU and that shortly after the infection has arrived at a

site, the distribution in the neighborhood of that site will approach the limiting

distribution m. The latter part of this statement is suggested by the fact that the two

processes nf0gt and nZdt which approach the equilibrium process nm
t from below and

from above, coincide on (1� e)tU. As a result nf0gt will be approximately dis-

tributed as nm
t on (1� e)tU for large t, provided it survives. Borrowing the vivid

language of DURRETT and GRIFFEATH (1982), the infection nf0gt spreads like a ‘blob

in equilibrium’. For a more precise and detailed account of the facts mentioned so

far, the reader is referred to e.g. DURRETT and GRIFFEATH (1882), LIGGETT (1985,

1999), BEZUIDENHOUT and GRIMMETT (1990), DURRETT (1991) and also FIOCCO

(1997). Figure 1 shows two simulations of the process nf0gt for k ¼ 0:5 and k ¼ 3

after N ¼ 40,000 transitions.

2 Statistical estimation

As was pointed out in Section 1, the contact process can serve as a simplified model

for the spread of a biological organism, such as an infectious disease, or the growth of a

forest. Obviously it is a rather simplified model, but it is clear that it may be refined to

any reasonable degree by also admitting interactions between non-neighbors, infec-

tion and recovery rates varying in space or over time, more than two states at any site,

etc. Such a class of models will have many applications in statistics and certainly

deserves serious study. The contact process seems the obvious starting point for such

studies: on the one hand it is the simplest non-trivial model in such a class and on the

other, it exhibits the complex behavior of such processes in that it has more that one

possible limit and produces a phase change at the critical value of k. In short, a study

of the statistical properties of the contact process should provide valuable information

and insight for further studies of similar but more complex models.

The first statistical problem of interest for the contact process is to estimate the

parameter k on the basis of a realization of the process n t at a single time t. In terms

of the growth of a forest, one does not observe its entire history fn t : tP0g but only

what it looks like today. We also assume that the forest started with a single tree at

the origin, so that we observe nf0gt . Obviously the exact distribution of the estimator
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k̂k t for finite t will be intractable, but if possible, the estimator k t should be consistent

and td=2(k̂k t � k) should have a manageable limit distribution as t! 1. We shall

therefore restrict attention to large t. This seems realistic: if the forest deserves its

name it has been there for quite some time.

Fig. 1. The process nf0gtN for k ¼ 0:5 (upper) k ¼ 3 (lower) and N ¼ 40,000.
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As there is no standard method for obtaining estimators in a case like this, we shall

simply use an estimating equation based on an equilibrium assumption for large t. At

any site x 2 Zd and time tP0, nf0gt (x) decreases from 1 to 0 at rate nf0gt (x) and

increases from 0 to 1 at rate k(1� nf0gt (x))
P

nf0gt (y), where the sum extends over the

2d neighbors of x in Zd. As we argued above, the shape theorem suggests that for

large t the distribution of the process on the set (1� e)tU should be close to its

limit for t! 1. In the limit the rate of increase should equal the rate of decrease

of the number of infected sites, so if jzj ¼
P

jzij is the L1 norm in Rd, Dt �
(1� e)tU \ Zd and

n
f0g
t (Dt) ¼

X
x2Dt

nf0gt (x), k
f0g
t (Dt) ¼

X
x2Dt

(1� nf0gt (x))
X

jx� yj¼1

nf0gt (y), (11)

then n
f0g
t should be asymptotic to kkf0gt and hence n

f0g
t =k

f0g
t should be a reasonable

estimate of k for large t. Note that n
f0g
t (Dt) denotes the number of infected sites in

Dt, whereas k
f0g
t (Dt) is the number of pairs of infected and non-infected neighboring

sites with the healthy site in Dt.

A problem in defining the estimator is the condition that the mask Dt should be a

subset of (1� e)tU \ Zd. The shape theorem only tells us that U is bounded and

convex and contains the origin as an interior point. The set U also depends on the

unknown k. To make matters worse we may not know the value of t either: we know

what time it is now, but when did the forest start? Luckily, the shape theorem ensures

that for every e > 0, Ht � (1þ e)tU eventually a.s. and if C(nf0gt ) denotes the convex

hull of nf0gt , this implies that for every d > 0, there exists e > 0 such that

Ct ¼ (1� d)C(nf0gt ) \ Zd � (1� e)tU \ Zd eventually almost surely.

(12)

In view of this, we now define the estimator of k at time t as

k̂kf0gt (Ct) ¼
n
f0g
t (Ct)

k
f0g
t (Ct)

(13)

Let jAj denote the cardinality of a set A � Zd and N(0, r2) the normal distribution

with expectation 0 and variance r2. We have the following result ensuring both

consistency and asymptotic normality of the estimator k̂kf0gt (Ct), conditional on the

process nf0gt surviving forever.

THEOREM 1 On the set fsf0g ¼ 1g where the process nf0gt survives forever, k̂kf0gt (Ct)

converges to k in probability as t! 1. The conditional distribution of

jCtj1=2(k̂kf0gt (Ct)� k) given that fsf0g ¼ 1g, converges weakly to N(0, r2) as

t! 1. Here r2 may be expressed in terms of the invariant measure m.

A number of remarks about the theorem are in order. The first concerns the

condition fsf0g ¼ 1g which cannot be verified when we observe nf0gt only at
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time t. However, in view of (7) we may replace the condition fsf0g ¼ 1g by

fsf0g > tg which is easily verified at time t: just look whether there are any

infected sites. Another problem may arise in the construction of the mask

Ct ¼ (1 � d)C(nf0gt ) \ Zd, which involves shrinking the convex hull of nf0gt by a

factor (1� d) towards the origin and selecting the lattice points of the resulting

set. What if we don’t know where the origin is located because we only see the

forest, but not the first tree where it started? In this case we may either estimate

the origin by some central point of the set nf0gt , or adopt a different type of

shrinking, called peeling. This is done by taking the convex set C(nf0gt ) and

peeling it like an apple by first removing all lattice points in the L1-contour of the

set, then constructing the convex hull of the remaining lattice points and repeating

this procedure k times until a positive fraction a of the lattice points has been

removed. The remaining lattice points now form Ct and the theorem will continue

to hold as before.

Removing a positive fraction of the points of nf0gt near the boundary of C(nf0gt )

before computing the estimator n
f0g
t =k

f0g
t is an essential step in the estimation

procedure. At these sites where the process has arrived only recently, the process

is not yet in equilibirum. For each infected site the number of healthy neighbors is

still too large which produces a negative bias in the estimator. Computer simulations

confirm that the estimator n
f0g
t (Zd)=k

f0g
t (Zd) based on all sites badly underestimates

k.
Removal of about 30% of the points of nf0gt generally produces quite convincing

estimates. Of course one faces the bias versus variance dilemma: the points one

removes, the smaller the bias will become and the larger the variance. Also, fewer

points need to be discarded for large values of k and/or t. For small k near the critical

value the estimator becomes highly unstable. Mathematically speaking the situation

is quite simple. The consistency statement of the theorem continues to hold even

without shrinking, i.e. for d ¼ 0 in (12), but in that case the asymptotic normality can

no longer be proved with our methods and is probably no longer true.

It remains to discuss the unknown variance r2 in the theorem. There is an explicit

expression r2 in terms of the invariant measure m and one could determine

r2 ¼ r2(k) as a function of k by simulation. In a particular case one would then use

r2(k̂kf0gt (Ct)) as an estimate of r2. However, it is also possible to estimate r2 from

the observed nf0gt itself by splitting the mask Ct into k approximately equal parts

Ct,1, . . . , Ct,k and computing the values of k̂kf0gt (Ct,i) for i ¼ 1, . . . , k. We then use

k�1jCtj times the sample variance of these values as an estimate of r2. The second

method has the obvious advantage that it is not as dependent on the contact process

model as the first. It is quite conceivable that k̂kf0gt (Ct) is a useful statistic in a much

broader class of models than the contact process and in this case the second method

is more likely to produce a sensible result.

Finally we remark that neither the estimator nor its asymptotic properties described

in Theorem 1 change if nf0gt is replaced by nAt for a finite A, i.e. it does not matter

whether the forest starts with a single tree or with a few more.
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3 Sketch of proofs

The proofs of the many steps that go into establishing the theorem are long, technical

and involved. Here we only give a brief description of the main steps. Our theorem

concerns the conditional distribution of the statistic k̂kf0gt (Ct) given fsf0g ¼ 1g as

t! 1. The mask Ct ¼ (1� d)C(nf0gt ) \ Zd is a random set which is eventually a.s.

contained in (1� e)tU according to (12). However, the random set Ct is determined

by the boundary of the convex hull C(nf0gt ), which is not contained in (1� e)tU for

any e > 0 eventualy a.s. according to the shape theorem. Thus k̂kf0gt (Ct) depends on

what happens near the boundary of the blob of infected sites about which we know

very little. This is the source of the main difficulty in the proof.

Let us therefore first prove the theorem with the random mask Ct replaced by a

non-random mask At � (1� e)tU \ Zd with jAtj ! 1. Thus we consider the

conditional distribution of k̂kf0gt (At) given fsf0g ¼ 1g. Now the statistic depends only

on nf0gt \ (1� e)tU and by the shape theorem we may replace nf0gt by nZ
d

t in the

definition of our statistic. Of course the conditioning on the event fsf0g ¼ 1g which

depends on the process fnf0gt : tP0g remains unchanged. However, by a relatively

simple argument based on (7) one can show that we can replace conditonal

probabilities for nZ
d

t conditioned on fsf0g ¼ 1g by unconditional probabilities for

nZ
d

t . Thus we have reduced a problem for the conditional distribution of nf0gt given

fsf0g ¼ 1g to the same problem for the unconditional distribution of nZ
d

t . If in

analogy to (11) and (13) we define

nZ
d

t (At) ¼
X
x2At

nZ
d

t (x),

kZ
d

t (At) ¼
X
x2At

(1� nZ
d

t (x))
X

jx� yj¼1

nZ
d

t (y), k̂kZ
d

t (At) ¼
nZ

d

t (At)

kZ
d

t (At)

then proving the theorem for non-random At reduces to proving the same results

unconditionally for k̂kZ
d

t (At).

As the nZ
d

t process is relatively easy to handle, we can show that for sets R1 and R2

in Zd the correlation between functions of nZ
d

t \ R1 and nZ
d

t \ R2 decays exponen-

tially with the distance of R1 and R2. This ensures a sufficient amount of indepen-

dence between the terms of sums like nZ
d

t (At) and k
Zd

t (At) and together with bounds

for their moments, it guarantees that the weak law and the central limit theorem will

work for both sums after proper normalization as EnZ
d

t (At)=Ek
Zd

t (At) ! k for

t! 1 we obtain convergence in probability of k̂kZ
d

t (At) to k, and k also occurs in the

normalization for the central limit theorem. This completes the proof for non random

masks At.

Extending the proof to the random mask Ct is considerably harder. To make it

work we have to show that, conditionally on fsf0g ¼ 1g, Ct is asymptotically

independent of nf0gt \ (1� e)tU. In other words we have to show that, given

fsf0g ¼ 1g, the choice of Ct which is determined by nf0gt (x) for x j2(1� e=2)tU is
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almost independent of nf0gt (x) for x 2 (1� e)tU. As the two sets of sites are at a

distance of order t from each other we now have to show that correlations for nf0gt
conditioned on fsf0g ¼ 1g decay sufficiently rapidly with increasing distance. It

would take us too far to provide further details here. A complete proof of the theorem

is given in FIOCCO and VAN ZWET (1998 and 1999).
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