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Abstract. In this article, we consider a compact representation
of multidimensional Markov Decision Processes based on Graphs
(GMDP). The states and actions of a GMDP are multidimensional
and attached to the vertices of a graph allowing the representation
of local dynamics and rewards. This approach is in the line ofap-
proaches based onDynamic Bayesian Networks. For policy optimi-
sation, a direct application of thePolicy Iterationalgorithm, of ex-
ponential complexity in the number of nodes of the graph, is not
possible for such high dimensional problems and we propose an ap-
proximate version of this algorithm derived from the GMDP repre-
sentation. We do not try to approximate directly the value function, as
usually done, but we rather propose an approximation of theoccupa-
tion measureof the model, based on themean fieldprinciple. Then,
we use it to compute the value function and derive approximate pol-
icy evaluation and policy improvement methods. Their combination
yields an approximatePolicy Iterationalgorithm of linear complexity
in terms of the number of nodes of the graph. Comparisons withthe
optimal solution, when available, and with a naive short-term policy
demonstrate the quality of the proposed procedure.

1 Introduction

Markov Decision Processes (MDP, [9]) have become a standard
model for decision-theoretic planning. However, they reach their lim-
its when dealing with spatial applications (e.g. control inecology,
epidemiology, computer networks...). In such contexts, the size of
the problem induces two difficulties: the representation and the time
complexity for the MDP resolution. To circumvent the first one, fac-
tored representations have been developed. Several methods of ag-
gregation/decomposition for large problems have been proposed in
the AI community. These methods ([2, 7]) use a compact represen-
tation of probability and reward functions involved in the MDP de-
scription and propose algorithms adapted for these factored descrip-
tions. However, these representations and algorithms usually only
consider the structure of the states space, not of the actions space.
In this article, we exploit a particular form of compact representation
of MDP, based on graphs modelling both states and actions spaces in
a common structure, that we will refer to as Graph MDP (GMDP).
In this framework, several states and actions variables areattached
to the vertices of a graph allowing the representation of local depen-
dencies. The dynamics of each state variable only depends onthe
action applied locally and on the current values of the neighbouring
state variables. The classicalPolicy Iterationalgorithm for policy op-
timisation does not scale to the size of factored MDP or GMDP:the
time complexity is exponential in the number of nodes in the graph.
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We propose an approximate version of thePolicy Iterationalgorithm
derived from the GMDP representation and from amean fieldap-
proximation of the stochastic model, leading to an approximation of
the occupation measureof the model. Then, we propose approxi-
mate policy evaluation and policy improvement steps, basedon the
occupation measure. Their combination yields an approximate Pol-
icy Iterationalgorithm and we discuss the computational complexity
of the proposed method. Then we assess its performance in terms of
precision by comparing experimentally the method to the exact Pol-
icy Iterationalgorithm when possible, and to a greedy policy when
not, on toy examples.

2 Graph-Based Markov Decision Processes

2.1 Definitions

In its classical formulation [9], a finite stationary MDP is described
by a four-tuple< X ,A, p, r >, whereX represents the finite set of
admissible states of the system,A the finite set of applicable actions,
p : X × A × X → [0, 1] the transition probabilities between states
andr : X × A → R an “immediate” reward function. In a MDP,
the statex′ ∈ X at stept + 1 depends only on the statex ∈ X at
time t and on the actiona ∈ A applied at this instant (Markov prop-
erty). The transition probability fromx to x′ givena is p(x′|x, a). In
addition, areward functionr is defined as the reward obtained when
actiona is applied on the system in the current state. When the pro-
cess is stationary, bothp(x′|x, a) andr(x, a) are independent oft.
In this article, we consider the situation where the statex ∈ X is
multidimensional, and the coordinates are not independent. They are
locally interacting and the interaction network can be represented by
a graph. The transition probabilities and the rewards are local ac-
cording to the graph structure. This representation has already been
exploited in [4] : a GMDP is defined by a 5-tuple< X ,A, p, r,G >,
the state space is a Cartesian productX = X1 × . . . × Xn, and the
action space is a Cartesian productA = A1× . . .×An. G = (V, E)
is an oriented graph, defined by a set of verticesV = {1, . . . , n} and
a set of (oriented) edgesE ⊆ V 2. An edge(i, j) means that nodei
influences nodej (i is aparentof j). A neighbourhood functionN
is defined overV by the set of parents of a given node :

Definition 1 (Neighbourhood function)
N : V → 2V is defined by :∀i ∈ V, N(i) = {j ∈ V, (j, i) ∈ E}.

We also introduce the following characteristics of the GMDP: σ =
maxi |Xi|, α = maxi |Ai| andν = maxi |N(i)| (ν is the maximum
degree of a node in the graph).
In a GMDP, transition probabilities and rewards are local according
to G:



Definition 2 (Local transitions) Let < X ,A, p, r,G > be a
GMDP. Transitions are said to belocal iff for all x =
(x1 . . . xn), x′ = (x′

1 . . . x′
n) ∈ X , a = (a1 . . . an) ∈ A,

p(x′|x, a) =

n
Y

i=1

pi(x
′
i|xN(i), ai),

where∀I ⊆ {1, . . . , n}, xI = {xi}i∈I . With this factored rep-
resentation, the space complexity of the representation ofp is now
O(n · σν+1 · α), instead ofO((σ2 · α)n) for a classical MDP.

Definition 3 (Local rewards) Let < X ,A, p, r, G > be a GMDP.
Rewards are said to belocal when∀x = (x1 . . . xn) ∈ X ,∀a =
(a1 . . . an) ∈ A,

r(x, a) =

n
X

i=1

ri(xN(i), ai).

A function δ : X → A assigning an action to every state is called
a policy. In the general case, policies for a GMDP take the form
δ = (δ1, . . . , δn), whereδi : X → Ai. Nevertheless, global poli-
cies can take space inO(n · σn) at most to be expressed, which can
be prohibitive, except for very low dimensionality problems. Some
special policies, calledlocal policiesare of special interest since they
take space inO(n · σν).

Definition 4 (Local policy) In a GMDP< X ,A, p, r, G >, a pol-
icy δ : X → A is said to belocal iff δ = (δ1, . . . , δn) where
δi : XN(i) → Ai.

2.2 GMDP example

Let us consider the graph in Figure 1, representing crop fields in-
fected or not by a disease. Each nodei, representing a field, has
two possible states :xi = 1 if uninfected andxi = 2 if infected
(Xi = {1, 2}). Edges represent possible paths for contamination
from neighbour locations. The disease passes through an edge with
fixed probabilityp (in this case the graph in non-oriented). In ad-
dition, every location has probabilityε of being infected through
long range contamination (from another region). Decisionsare taken
yearly and two actions are possible for each node :ai = 1 if a nor-
mal culture mode is used, andai = 2 if the field is left fallow and
treated (Ai = {1, 2}). Yields are affected by the state of the field and
the applied action: the disease halves the yearly yield, while leaving
the crop fallow generates no yield. Transition probabilities and re-
wards are summarised in Table 1. The objective in such context is to
optimise the choice of a long-term policy in terms of expected yield.
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Figure 1. An epidemiological problem state: white (resp. black) nodes
represent uninfected (resp. infected) fields.

2.3 Search for an optimal policy

Let < X ,A, p, r, G > be a GMDP, discounted with discount factor
γ. In the stationary case, the problem of searching an optimalpolicy

p(x′
i|xN(i), ai)

ai = 1 ai = 2
xi = 1 xi = 2 xi = 1 xi = 2

x′
i = 1 1 − P (ε, p) 0 1 q

x′
i = 2 P (ε, p) 1 0 1 − q

r(xi, ai)
ai = 1 ai = 2

xi = 1 r 0
xi = 2 r/2 0

Table 1. Epidemiological problem: transition probabilities and rewards,
P (ε, p) = ε + (1 − ε)(1 − (1 − p)ni ), with ni the number of parents ofi

which are infected.

with respect to the infinite horizon-discounted value of a policy δ,

Vδ(x) = E
h

P+∞
t=0 γtr(Xt, δ(Xt)) | X0 = x

i

, can be written as:

Find δ∗,X → A, Vδ∗(x) ≥ Vδ(x),∀x ∈ X ,∀δ ∈ AX

(NB: In this section and in the following, we will use upper case
letters to represent random variables, and lower case ones for reali-
sations of these random variables.)
This problem is classically solved by Stochastic Dynamic Program-
ming methods [9] such as theBackwards Induction, Policy Iteration
andValue Iterationalgorithms.
ThePolicy Iteration(PI) algorithm consists in the alternation of an
evaluationphase of the current policy and animprovementphase of
this policy.
Policy Evaluation step:Solve

Vδ(x) = r(x, δ(x)) + γ ·
X

x′∈X

p(x′|x, δ(x)) · Vδ(x
′),∀x.

Policy improvement step: Update the current policyδ into a policy
δ′ by applying for allx :

δ′(x) = arg max
a∈A

“

r(x, a) + γ ·
X

x′∈X

p(x′|x, a) · Vδ(x
′)

”

.

It is guaranteed thatVδ′(x) ≥ Vδ(x),∀x, after the improvement
phase. Furthermore whenVδ′(x) = Vδ(x),∀x we have the guar-
antee thatδ is an optimal policy [9].
Generally, the PI algorithm converges within a very small num-
ber of iterations, but each iteration is costly since policyevaluation
needs solving a system of equations (complexity inO(σ3n)) and pol-
icy improvement has complexity inO((σ2 · α)n). This exponential
complexity limits severely the size of GMDP that can be efficiently
solved. In this paper we propose an approximation of the two steps
of the PI algorithm for a GMDP, based on the search of an (a pri-
ori sub-optimal) policy among the local ones, which leads toa time
complexity linear inn (but exponential inν).

3 Approximate PI for GMDP

3.1 Policy Value and Occupation Measures

There exists an alternative way of expressing a policy value, based on
the occupation measure, which has been used for instance in [1]. The
occupation measure is related to the time a stochastic process spends
in a given state, knowing the initial state. By extension, occupation
measures have also been used in the framework of discounted MDP.

Definition 5 (Occupation measure) Let < X ,A, p, r > be a sta-
tionary MDP,γ a discount factor. Letδ : X → A be a policy and



x0 ∈ X an initial state. The occupation measurePx0,δ,γ : X →
[0, 1] is defined as:

∀y ∈ X , Px0,δ,γ(y) = (1 − γ)
+∞
X

t=0

γt · Pδ(X
t = y|X0 = x0).

The value functionVδ of any policy can be computed from the prob-
ability distributionPx0,δ,γ as

∀x0 ∈ X , Vδ(x
0) =

1

1 − γ
·

X

y∈X

Px0,δ,γ(y) · r(y, δ(y)).

In particular,∀δ a local policy, the value function can be decomposed
asVδ(x

0) =
Pn

i=1 V i
δ (x0), where

V i
δ (x0) =

+∞
X

t=0

γt ·
X

y∈X

Pδ(X
t = y|X0 = x0)·ri(yN(i), δi(yN(i))).

(1)
As such, this expression does not help to compute efficientlyoptimal
or near optimal policies. However, we propose to look for an approx-
imationĈ of the conditional probabilityPδ(X

t = y|X0 = x0) with
simpler structure, which will result in an approximation ofV i

δ (x0) by
a function depending only onx0

N(i). Conditional probabilities (from
time 0 to timet) can be derived from the transition probabilities
pi(x

t
i | xt−1

N(i)
, δ(xt−1

N(i)
)). If we are able to find approximate transi-

tion probabilities of the formQ̂t,i
δ (xt

i|x
t−1
i ) then the corresponding

approximate conditional probability will be,∀t ≥ 2,

Ĉt
δ(y|x

0) =
X

xt−1

Q̂t
δ(y|x

t−1).Ĉt−1
δ (xt−1|x0)

=
n

Y

i=1

X

xt−1
i

Q̂t,i
δ (yi|x

t−1
i ).Ĉt−1,i

δ (xt−1
i |x0

i ). (2)

the recursive definition being initialised byĈ1
δ (y|x0) =

Q

i Q̂1,i
δ (yi|x

0
i ). And by induction, ∀t, Ĉt

δ(y|x
0) =

Qn
i=1 Ĉt,i

δ (yi|x
0
i ), so that we getV i

δ (x0) ≈ V̂ i
δ (x0

N(i)) where

V̂ i
δ (x0

N(i)) =
+∞
X

t=0

γt·
X

yN(i)

„

Y

j∈N(i)

Ĉt,j
δ (yj |x

0
j)·ri(yN(i), δi(yN(i)))

«

.

The main contribution of this work is to propose a solution for the
choice ofQ̂t,i

δ (xt
i|x

0
i ), derived from the mean field principle, as de-

tailed in the next section.

3.2 Mean field approximation of the transition
probabilities

The mean field principle arises from statistical mechanics [3] and
the study of systems of particles in interaction and Gibbs dis-
tributions. It has since been successfully used in other domains
such as image analysis, graphical models, epidemiology, ecology.
The mean field approximation of a multidimensional distribution
P (u1, . . . , um) is defined as the best approximation by a system
of independent variables in the sense of the Kullback-Leibler diver-
gence,KL(Q|P ) = EQ[log(Q/P )]. The minimum ofKL(Q|P )
is thus looked for among the distributionsQ with factorisation prop-
erty:Q(u1, . . . , um) =

Qm
i=1 Qi(ui).

In the GMDP framework, the model complexity lies in the spatio-
temporal dependence between sites’ states. More specifically, if

Xt = {Xt
1, . . . , X

t
n} is the random variable corresponding to the

system’s state at timet then, given a policyδ, the variableXt
i de-

pends on the variables in its neighborhood at the previous time step,
Xt−1

N(i) through the transition probabilities. So, we propose to apply

the mean field principle to the joint distribution ofXt−1 andXt,
which is fully defined by the distribution ofXt−1, and the transition
probability ofXt knowingXt−1.
Let us start the iterative approximation procedure at timet = 1. We
will use the notationP for the exact distributions and the notationQ
for the approximate ones. Assuming an initial, factored, distribution
P 0 onX 0 (for sake of simplicity and also to ensure the repeatability
of the approximation method from one time step to the next one) we
have the following forms for the exact and the approximate distribu-
tions:

P 0(x0) =
n

Y

i=1

P 0,i(x0
i ), Pδ(x

1|x0) =
n

Y

i=1

pi(x
1
i |x

0
N(i), δi(x

0
N(i)))

Q0(x0) = P 0(x0), Q1
δ(x

1|x0) =
n

Y

i=1

Q1,i
δ (x1

i |x
0
i ) (3)

With the approximate model, givenδ, X1,i depends only onX0,i.
Let us denoteQ the set of all joint distributions ofXt−1 andXt

which can be decomposed as (3). Among all the elements ofQ, we
are looking for the best approximation of the exact joint distribution,
according to the Kullback-Leibler divergence. SinceQ0 = P 0, the
approximation is only onQ1

δ.

Proposition 1 (Mean field approximation of the transitions) The
mean field approximation̂Q1

δ, defined as the solution of

Q̂1
δ = arg min

Q1
δ
∈Q

KL(Q1
δ(X

1|X0).P 0(X0)|Pδ(X
1|X0).P 0(X0))

is

Q̂1,i
δ (x1

i |x
0
i ) ∝ expEP0

ˆ

log pi(x
1
i |x

0
i , X

0
N(i)\{i}, δi(x

0
i , X

0
N(i)\{i}))

˜

(4)

Proof: Indeed, we have

KL(Q1
δ(X

1|X0).P 0(X0)|Pδ(X
1|X0).P 0(X0))

=
X

x0,x1∈X2

Q1
δ(x

1|x0).P 0(x0). log
Q1

δ(x
1|x0)

Pδ(x1|x0)

Setting the derivates according to theQ1,i
δ (x1

i |x
0
i ) to zero, we obtain

the mean field solution.2

By switching the expectation and the logarithm, we obtain the ap-
proximation

Q̂1,i
δ (x1

i |x
0
i ) = EP0

ˆ

pi(x
1
i |x

0
i , X

0
N(i)\{i}, δi(x

0
i , X

0
N(i)\{i}))

˜

It is easy to check that this quantity is normalized. It is easier to
compute and more intuitive than expression (4). We will use this ap-
proximation in the following as the mean field approximationof the
transition probabilities. Note that this factored expression relies on
an initial factored a priori distributionP 0. This initial distribution
is necessary for technical reasons, but can also help representing a
priori knowledge about the initial distribution of the process. If no a
priori knwoledge is available, we simply choseP 0 as a product of
independent uniform laws on theXi’s.
Given the approximate transition probabilities between time 0 and



time 1, and givenP 0, we can derive the approximate probability dis-
tribution ofX1 for a given policyδ:

Q̂1
δ(x

1) =
X

x0

Q̂1
δ(x

1|x0).P 0(x0) =

n
Y

i=1

X

x0
i

Q̂1,i
δ (x1

i |x
0
i ).P

0,i(x0
i )

This approximate distribution at time 1 has also the factorisation
property. Thus we can iterate the approximation method (min-
imisation of the Kullback-Leibler divergence) and obtain for each
time stept ≥ 2 an approximation of the transition probabilities,
Q̂t+1

δ (xt+1|xt). Note that they depend ont (and onP 0) while this
is not the case in the initial model.

3.3 Approximate Policy Evaluation

Using the mean field approximation of the occupation measureto
perform the evaluation step, we recall that we obtain an approxima-
tion of each component of the policy value of the following form:

V̂ i
δ (x) ≈ V̂ i

δ (xN(i))

≈

+∞
X

t=0

γt ·
X

yN(i)

“

Y

j∈N(i)

Ĉt,j
δ (yj |xj)

”

· ri(yN(i), δi(yN(i)))

In this approximation, each componentV̂ i
δ depends onxN(i) only.

This results in a reduced time complexity, exponential in the maxi-
mum number of neighbours of a node, as opposed to exponentialin
the number of nodes for the exact PI.

Proposition 2 (Complexity of the Approximate Policy Evaluation)
Letǫ be the stopping threshold in the computation of the infinite sum
over time. Then the complexity of the Approximate Policy Evaluation
step is inO(ln(1/ǫ) · n · σ3ν · ν2).

Proof: There aren · σν quantitiesV̂ i
δ (xN(i)) to compute. Then,

for a given sitei and a given configurationxN(i), the compu-

tation of γt P

yN(i)

“

Q

j∈N(i) Ĉt,j
δ (yt

j |xj))
”

.ri(yN(i), δi(yN(i)))

requires at mostσν summations,ν products, and the evaluation of
Ĉt,j

δ (yt
j |xj). This last evaluation is of complexityν · σ · σν−1: sum

over each possible state of sitei at the previous time step and compu-
tation of the approximated transition probabilities as expectations of
products ofν+1 terms. The discount factorγt ensures that the preci-
sion required is reached for a timet > K ln(ǫ)

ln(γ)
. Finally, the complex-

ity of the Approximate Policy Evaluation isO(ln(1/ǫ)·n·σ3ν ·ν2).2

3.4 Approximate Policy Improvement

In order to reduce the search space, we limit the search of approx-
imately optimal policies among local ones (even if in general there
is no guarantee that there exist a local policy which is optimal). This
allows a reduction in representation space and in time complexity.
Using the mean field approximation ofVδ and the local properties of
rewards and transition probabilities, the exact maximisation

δ′(x) = arg max
a∈A

“

r(x, a) + γ ·
X

y∈X

p(y|x, a) · Vδ(y)
”

,∀x.

is replaced by the search of the arguments of the maximum of the
expressions :
X

i

ri(xN(i), ai) + γ
X

yN(i)

“

Y

j∈N(i)

pj(yj |xN(j), aj)V̂
i

δ (yN(i))
”

.

Let us consider a particular sitei. The terms which depend onai are

ri(xN(i), ai)+γ
X

k/i∈N(k)

X

yN(k)

“

Y

j∈N(k)

pj(yj |xN(j), aj)·V̂
i

δ (yN(k))
”

.

In order to ensure that the argument of the maximum is local, first we
adopt a parallel scheme, initialised byδ, to compute each component
of the improved policy:

∀i, δ̃n+1
i (x) = arg max

ai∈Ai

ri(xN(i), ai) + γ
X

k s.t.i∈N(k)

X

yN(k)

»

“

Y

j∈N(k),j 6=i

pj(yj |xN(j), δ̃
n
j (xN(j)))

”

· pi(yi|xN(i), ai) · V̂
i

δ (yN(k))

–

.

This is not enough since theith component of the solution still de-
pend onxN(N(i)). So, we replace the transition probabilitiespj by
appropriate mean values, in order to restrict dependencies, as follows

pi(yi|xN(i), ai) ≈

P

xN(i)\{i}
pi(yi|xN(i), ai)

card(XN(i)\{i})

if j ∈ N(i):

pj(yj |xN(j), δ(xN(j))) ≈

P

xN(j)\{j}
pj(yj |xN(j), δj(xN(j)))

card(XN(j)\{j})

if j /∈ N(i):

pj(yj |xN(j), δ(xN(j))) ≈

P

xj
pj(yj |xN(j), δj(xN(j)))

card(Xj)

Proposition 3 (Complexity of Approximate Policy Update) The
Approximate Policy Update step is of complexityO(n.α.ν2.σ2ν).

Proof: The maximisation is performed for all sites, and is overα
terms at most. The computation of the approximate version ofex-
pression (??) requires at mostν.σν summations andν products. One
element of the product is computed either inσν or in σ operations.
This leads to a complexity of at mostO(n.α.ν2.σ2ν).2

3.5 Experimental evaluation of API

We first tested the mean field approximation of thePolicy Iteration
(MF-PI) algorithm on problems of small size, where the exact
solution of the PI algorithm for standard MDP is available, in order
to assess the quality of the approximate policies returned by MF-PI.
The first toy example used is the one presented in Section 2.2.The
parameters were set top = 0.2, ε = 0.01, q = 0.9. The second
example is an extension to four states per node: the state ’healthy’
and three states of increasing severity in the case of an infected field.

Example 1
n error CPU MF CPU PI
3 0% 1.44 10.11
4 6.5% 5.75 65.52
5 3.3% 6.78 454.54
6 10.1% 9.07 3485.6

Example 2
n error CPU MF CPU PI
3 0% 21.4 646
4 3.6% 574 21200
40 4380

Table 2. Mean relative error (in percentage) between the optimal policy
and the estimated one, and computation time.



In both cases, the graphs were generated randomly, with a max-
imum size ofN(i) of 3. For varying values ofn, we observed a
limited loss in the quality of the optimal policy (with a meanrela-
tive error no more than 10 %, see Table 2) and a significant gainin
time complexity (see Figure 2). We observe a linear progression of
the CPU time required by MF-PI with respect to the number of nodes
(see Figure 2). Implementation was done in Scilab, on a quadripro-
cessor PC with four Intel 2.40 GHz processors with 512 Ko of cache.
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In a second set of experiments, we compared the relative perfor-
mance of the MF-PI and the greedy (maximising the local imme-
diate rewards) policies for graphs of larger size, on the problem of
epidemiology control (version with three states of diseaseseverity).
Graph of dependencies were generated randomly and the MF-PIand
the greedy policies were computed and their values were estimated
using Monte Carlo simulations. Figure 3 illustrates the gain in the
empirical value using MF-PI instead of the greedy policy, asa aver-
age over 5 problems, 10 initial states per problem, and simulation of
100 trajectories of length 20.
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4 Concluding remarks

In this paper, we described a specific form of factored MDP (FMDP)
which uses a graph-based representation of local dependencies: the
GMDP framework. The specificities are: first, each decision node is
the parent of exactly one state and no two decision nodes are attached
to the same state node. second, the scope of each reward node is
included in the set of parents of one state variable and no tworeward
nodes are attached to the same state variable.

An important feature of GMDP is that they admit problem and
approximately optimal solution representations in space linear in the
size of the underlying graph. However, classical Dynamic Program-
ming algorithms use space and time exponential in the size ofthe
graph to compute optimal solutions. We have proposed an approxi-
matePolicy Iterationalgorithm which requires only linear space and

time provided that the graph width remains small. The quality loss as-
sociated with this gain in time complexity is not known yet. However,
experiments showed that it is limited. In particular, the approximate
algorithm greatly improves the greedy short-term solutionwhich is
usually the only one available in problems of high dimension.

Our approach should be contrasted to [2, 7, 5] which are also
devoted to FMDP. [2] usesalgebraic decision diagrams(ADD) to
model and solve FMDP and [7, 5] use alinear programmingap-
proach. [5] propose a method to tackle FMDP with multiple decision
variables based on the idea of sampling the (exponential size) set
of constraints generated by a linear programming (LP) modelling of
a FMDP. However, to keep acceptable probabilistic bounds onthe
quality of the returned policy, the sample size should remain pro-
portional to the number of possible actions, i.e. exponential in the
number of decision variables. [7] instead consider the exact LP, but
propose a specificvariable eliminationmethod which take the struc-
ture of the LP into account in order to solve it exactly. [7] points out
experiments in which his method outperforms that of [5] whenthe
same computation time is allowed to both methods.

[2, 7, 5] can only handle problems with a small number of decision
variables and are thus inadequate to solve GMDP. In [8],collabora-
tive multi-agent factored MDP, which are more general than GMDP,
are studied and approximately solved by a dedicated algorithm. The
empirical comparison between this algorithm and ours has not been
performed yet, but the complexity of this algorithm is quadratic in
the number of decision variables, while ours is linear.

Finally, [6] propose a LP-based method for solving GMDP, de-
rived from the method of [7]. Experiments led so far show thateven
if this approach differs from ours, the returned policies have similar
values, and the CPU times are linearly related. We are currently in-
vestigating the benefits of each method, in particular theirability to
face the following generalisation of GMDP. An important assump-
tion of the GMDP framework is that the action spaceA is a cross
product of independentlocal action spacesAi. However, this as-
sumption should be relaxed (A becoming a strict subset of

Q

i Ai),
as soon as we want to model resource allocation or local constraints
between the actions. Relaxing this independence assumption clearly
affects the approximation method suggested in this paper and we are
currently exploring the effects of this relaxation.
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