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In this article, we consider a compact representationWe propose an approximate version of Radicy Iterationalgorithm

derived from the GMDP representation and frormean fieldap-

(GMDP). The states and actions of a GMDP are multidimensionaproximation of the stochastic model, leading to an appraxiom of

and attached to the vertices of a graph allowing the reptaten
of local dynamics and rewards. This approach is in the linagsf
proaches based ddynamic Bayesian NetworkEor policy optimi-
sation, a direct application of tHeolicy Iterationalgorithm, of ex-
ponential complexity in the number of nodes of the graph,ds n
possible for such high dimensional problems and we propospa
proximate version of this algorithm derived from the GMDPne
sentation. We do not try to approximate directly the valuefion, as
usually done, but we rather propose an approximation cbticepa-
tion measureof the model, based on theean fieldprinciple. Then,
we use it to compute the value function and derive approxérpat-
icy evaluation and policy improvement methods. Their caration
yields an approximatBolicy Iterationalgorithm of linear complexity
in terms of the number of nodes of the graph. Comparisonstivith
optimal solution, when available, and with a naive shomtateolicy
demonstrate the quality of the proposed procedure.

1 Introduction

the occupation measuref the model. Then, we propose approxi-
mate policy evaluation and policy improvement steps, basethe
occupation measure. Their combination yields an appraeial-

icy Iterationalgorithm and we discuss the computational complexity
of the proposed method. Then we assess its performancenia tdr
precision by comparing experimentally the method to theeRal-

icy Iterationalgorithm when possible, and to a greedy policy when
not, on toy examples.

2 Graph-Based Markov Decision Processes
2.1 Definitions

In its classical formulation [9], a finite stationary MDP isstribed
by a four-tuple< X', A, p,r >, whereX’ represents the finite set of
admissible states of the systerhthe finite set of applicable actions,
p: X x Ax X — [0,1] the transition probabilities between states
andr : X x A — R an “immediate” reward function. In a MDP,
the statexr’ € X at stept + 1 depends only on the statec X at

Markov Decision Processes (MDP, [9]) have become a standarimet and on the action < .A applied at this instant (Markov prop-

model for decision-theoretic planning. However, they reheir lim-
its when dealing with spatial applications (e.g. controkirology,
epidemiology, computer networks...). In such contexts, stze of
the problem induces two difficulties: the representatiot ttue time
complexity for the MDP resolution. To circumvent the firseofac-
tored representations have been developed. Several nsedifi@d)-
gregation/decomposition for large problems have beengsex in
the Al community. These methods ([2, 7]) use a compact repres
tation of probability and reward functions involved in theD® de-
scription and propose algorithms adapted for these fedttescrip-
tions. However, these representations and algorithmsllysoaly
consider the structure of the states space, not of the actjmarce.

In this article, we exploit a particular form of compact repentation
of MDP, based on graphs modelling both states and actionesia
a common structure, that we will refer to as Graph MDP (GMDP).
In this framework, several states and actions variablestiaehed
to the vertices of a graph allowing the representation ddlldepen-
dencies. The dynamics of each state variable only dependkeon
action applied locally and on the current values of the rigigining
state variables. The classidlicy Iterationalgorithm for policy op-
timisation does not scale to the size of factored MDP or GMIDE:
time complexity is exponential in the number of nodes in trapb.
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erty). The transition probability from to z’ givena is p(z'|z, a). In
addition, areward functionr is defined as the reward obtained when
actiona is applied on the system in the current state. When the pro-
cess is stationary, boti(z’|z, a) andr(z, a) are independent af

In this article, we consider the situation where the state X is
multidimensional, and the coordinates are not independémty are
locally interacting and the interaction network can be espnted by

a graph. The transition probabilities and the rewards atel lac-
cording to the graph structure. This representation haadjr been
exploited in [4] : a GMDP is defined by a 5-tupte X', A, p, 7, G >,

the state space is a Cartesian prodticE X; x ... x X, and the
action space is a Cartesian prodct= A1 x...x A,.G = (V, E)

is an oriented graph, defined by a set of vertiges: {1,...,n} and

a set of (oriented) edge8 C V2. An edge(i, j) means that node
influences nodg (i is aparentof j). A neighbourhood functiodv

is defined ovel” by the set of parents of a given node :

Definition 1 (Neighbourhood function)
N:V —2Visdefined by Vi € V,N(i) = {j € V, (§,i) € E}.

We also introduce the following characteristics of the GMBP=

max; |X;|, @ = max; |A;| andv = max; | N (7)| (v is the maximum
degree of a node in the graph).

In a GMDP, transition probabilities and rewards are locabading
to G:



Definition 2 (Local transitions) Let < X, A,p,r,G > be a
GMDP. Transitions are said to bdocal iff for all =
(z1...2n), 2" = (21 ... 23) € Xya=(a1...an) € A,

p(ml|$7 a) = Hp’i(meN(’i)? a’i)7
i=1

whereVI C {1,...,n}, x5 = {zi}ics. With this factored rep-
resentation, the space complexity of the representatignisfnow
O(n - a”*! . a), instead o0 ((o? - a)™) for a classical MDP.

Definition 3 (Local rewards) Let< X, A, p,r,G > be a GMDP.
Rewards are said to blocal whenvz = (z1...2z,) € X,Va =
(a1...an) € A,

n

r(z,a) = Z i (TN (), i)-

i=1

A functioné : X — A assigning an action to every state is called

a policy. In the general case, policies for a GMDP take thenfor
6 = (61,...,0n), whered; : X — A;. Nevertheless, global poli-
cies can take space ®(n - ¢™) at most to be expressed, which can
be prohibitive, except for very low dimensionality problensome
special policies, callelibcal policiesare of special interest since they
take space il (n - o).

Definition 4 (Local policy) Ina GMDP < X, A, p,r,G >, a pol-
icyd : X — Ais said to belocal iff § = (d1,...,,) where
(51' : XN(i) — .AZ

2.2 GMDP example

Let us consider the graph in Figure 1, representing cropsfigie
fected or not by a disease. Each nagdeepresenting a field, has
two possible statesa; 1 if uninfected ande; = 2 if infected

(X = {1,2}). Edges represent possible paths for contamination

from neighbour locations. The disease passes through anweitly

fixed probabilityp (in this case the graph in non-oriented). In ad-

dition, every location has probability of being infected through
long range contamination (from another region). Decisamestaken
yearly and two actions are possible for each nodge = 1 if a nor-

mal culture mode is used, ang = 2 if the field is left fallow and

P(UEHUEN(i)-,ai)
a; = a; = 2
T; = 1 T, = 2 x; = 1 T, = 2
2. =1 1-P(e,p 0 1 q
. =2 P(e,p) 1 0 1—gq
(@ ay)
ai:1 a; =2
x; =1 r 0
T; = 2 r/2 0

Table 1. Epidemiological problem: transition probabilities and/aeds,
P(e,p) =e+ (1 —¢)(1 — (1 — p)™i), with n; the number of parents of
which are infected.

with respect to the infinite horizon-discounted value of #qyod,
Vi(z) = B| 55 4'r(X',6(X")) | X° = |, can be written as:

Find&*, X — A, Vs« () > Vs(z),Vx € X,¥6 € A

(NB: In this section and in the following, we will use uppersea
letters to represent random variables, and lower case onesdli-
sations of these random variables.)

This problem is classically solved by Stochastic DynamiogPam-
ming methods [9] such as thigackwards InductionPolicy Iteration
andValue Iterationalgorithms.

The Policy Iteration (PI) algorithm consists in the alternation of an
evaluationphase of the current policy and anprovemenphase of
this policy.

Policy Evaluation step:Solve

Vs(z) =r(z,6(z)) + - z p(z'|z,8(z)) - Vs(x'), Va.

z'eX

Policy improvement step: Update the current policy into a policy
&’ by applying for allx :

§'(z) = arg max (r(x, a)+ - Z p(z|z,a) - V(;(:c')).

z'eXx

It is guaranteed thaVy (z) > Vs(x),Vz, after the improvement
phase. Furthermore whé () = Vs(x),Vx we have the guar-
antee thab is an optimal policy [9].

Generally, the PI algorithm converges within a very smalinau

treated (A; = {1, 2}). Yields are affected by the state of the field and per of iterations, but each iteration is costly since pobegluation

the applied action: the disease halves the yearly yieldeWbaving
the crop fallow generates no yield. Transition probaleiitand re-
wards are summarised in Table 1. The objective in such corstéx
optimise the choice of a long-term policy in terms of expdatield.

Figure 1. An epidemiological problem state: white (resp. black) reode
represent uninfected (resp. infected) fields.

2.3 Search for an optimal policy

Let< X, A, p,r,G > be a GMDP, discounted with discount factor
~. In the stationary case, the problem of searching an optiwiaty

needs solving a system of equations (complexi@i{a>")) and pol-

icy improvement has complexity i@((c? - «)™). This exponential
complexity limits severely the size of GMDP that can be effitly
solved. In this paper we propose an approximation of the tepss

of the PI algorithm for a GMDP, based on the search of an (a pri-
ori sub-optimal) policy among the local ones, which leada tame
complexity linear inn. (but exponential inv).

3 Approximate Pl for GMDP
3.1 Policy Value and Occupation Measures

There exists an alternative way of expressing a policy vadased on
the occupation measure, which has been used for instantk rhie
occupation measure is related to the time a stochastic gsapEEnds
in a given state, knowing the initial state. By extensiorgupation
measures have also been used in the framework of discouridéd M

Definition 5 (Occupation measure) Let < X', A, p,r > be a sta-
tionary MDP,~ a discount factor. Let : X — A be a policy and



0

x” € X an initial state. The occupation measuRgo 5., : X —
[0, 1] is defined as:
Yy € X, Py 27 - Ps(X —y|X0—:rO)

The value functiori/s of any policy can be computed from the prob-
ability distributionP,0 5 ., as

vz’ e X, Vs(a

ZPO(;,Y

yexXx

(y,6(y))-

= {X{,...,X.} is the random variable corresponding to the
system’s state at timethen, given a policys, the variableX} de-
pends on the variables in its neighborhood at the previous step,

Xj\,(l) through the transition probabilities. So, we propose tdyapp

the mean field principle to the joint distribution &' and X*,
which is fully defined by the distribution o¥*~!, and the transition
probability of X* knowing X ‘1.

Let us start the iterative approximation procedure at time 1. We

will use the notationP for the exact distributions and the notatign

for the approximate ones. Assuming an initial, factorediriiution

P% on X0 (for sake of simplicity and also to ensure the repeatability
of the approximation method from one time step to the nexj ome

In partlcular V6 alocal pollcy, the value function can be decomposedhaye the following forms for the exact and the approximasrittiu-

asVs(z ) > 1V(;( ) where
Zw D Ps(Xt =yX° =2)ri(yny, 0 (yvn)-
yexXx

@
As such, this expression does not help to compute efficieptiynal
or near optimal policies. However, we propose to look for pprax-
imationC of the conditional probability?s (X* = y|X° = 2°) with
simpler structure, which will result in an approximatioriaf(z°) by
a function depending only on‘}\,(i). Conditional probabilities (from
time 0 to timet) can be derived from the transition probabilities

pi(x} | l’N( X d(zy ) If we are able to find approximate transi-

tion probabilities of the fornQ%* (zt|=!~") then the corresponding
approximate conditional probability will b&t > 2,

Ciwlz®) = > Qbyla'").C5 (")
zt—1
= HZQ (yilzi").C5 M (@i D). (2)
=1, = 1
the recursive definition being initialised tg)é§(y|m°) =
[1, Q5 (v:il2?). And by induction, Vi, Cj(yla®) =
[T, Cy' (yil=?), so that we geVy (z°) & Vj (z%;)) where
@) Zv S (T )t dune)))

YN(@) JEN(D)

The main contribution of this work is to propose a solution tlee
choice of Q%" (zf|2?), derived from the mean field principle, as de-
tailed in the next section.

3.2 Mean field approximation of the transition
probabilities

The mean field principle arises from statistical mechan8isahd
the study of systems of particles in interaction and Gibbs di
tributions. It has since been successfully used in otherailwen
such as image analysis, graphical models, epidemiologlogg
The mean field approximation of a multidimensional disttid
P(ul, e
of independent variables in the sense of the Kullback-legitliver-
gence, K L(Q|P) = Eg[log(Q/P)]. The minimum of K L(Q|P)
is thus looked for among the distributio@swith factorisation prop-
erty: Q(u1, ..., um) = [[1~, Qi(ui).

In the GMDP framework, the model complexity lies in the spati
temporal dependence between sites’ states. More spdgifidal

tions:
P'a”) = [[P*"(a?), Ps(a'a®) = [ [ pilwilo), di(@h))
=1 =1
QO(ZL’O) _ PO(ZL’O), 1 II)O) _ H Qé,i(xl IEO (3)
i=1

With the approximate model, givei) X*** depends only onX %%,
Let us denoteQ the set of all joint distributions of{*~! and X*
which can be decomposed as (3). Among all the elemeng, efe
are looking for the best approximation of the exact jointriisition,
according to the Kullback-Leibler divergence. Sirgé = P, the
approximation is only o} .

Proposition 1 (Mean fieIdAapproximation of the transitions) The
mean field approximatio®}, defined as the solution of

Q3 = arg mln KL(Qs(X'X°).P*(X%)|Ps (X' X%).P° (X))
E

(xz |:Cz) X exp EPO Dng (‘rz |$17XN(2)\{2}7 5 (:CwXN(z)\{z}))]
4

Proof: Indeed, we have

KL(Q§(X'X%).PY(X°)|Ps (X" X%).P°(X?))

> Qi(a'f2").P°

20, xlex?

Setting the derivates according to @é’i(
the mean field solutiori]

x}|x?) to zero, we obtain

By switching the expectation and the logarithm, we obtaim dp-
proximation

25 (xilal) =

It is easy to check that this quantity is normalized. It isiea
compute and more intuitive than expression (4). We will e ap-
proximation in the following as the mean field approximatadrthe

Epo [pi(a|2f, XN iy 0 (2%, XX i)

,um) is defined as the best approximation by a systemtransition probabilities. Note that this factored expi@sselies on

an initial factored a priori distributiodP®. This initial distribution
is necessary for technical reasons, but can also help egneg a
priori knowledge about the initial distribution of the pess. If no a
priori knwoledge is available, we simply cho#® as a product of
independent uniform laws on th¥’s.

Given the approximate transition probabilities betweameti0 and



time 1, and giverP®, we can derive the approximate probability dis-
tribution of X* for a given policys:

Qs(@') = Qs(a'2°).P ") = [[ > Q5" (ail
z0 i=1 29

). P o)

This approximate distribution at time 1 has also the fastdion

Let us consider a particular siteThe terms which depend an are

ri(@ney, @)+ Y Z( 11 pj(yj|='17N(j)7aj)'véi(yN(k)))-

k/i€EN(k) YN (k) JEN(k)

In order to ensure that the argument of the maximum is locat ie
adopt a parallel scheme, initialised &yto compute each component

property. Thus we can iterate the approximation method {min ©f the improved policy:

imisation of the Kullback-Leibler divergence) and obtaor £ach
time stept > 2 an approximation of the transition probabilities,
QL' (2'1)z"). Note that they depend an(and onP?) while this

is not the case in the initial model.

3.3 Approximate Policy Evaluation

Using the mean field approximation of the occupation meagure
perform the evaluation step, we recall that we obtain anapma-
tion of each component of the policy value of the followingrfo

Vs (x) Vi (T i)

~
~

t=0 YN(@) JEN(D)

In this approximation, each componerif depends orx ;) only.
This results in a reduced time complexity, exponential i Itiaxi-
mum number of neighbours of a node, as opposed to exponantial

the number of nodes for the exact PI.

Proposition 2 (Complexity of the Approximate Policy Evalugion)
Lete be the stopping threshold in the computation of the infinira s
over time. Then the complexity of the Approximate Policylatan
step is inO(In(1/¢) - n - 0 - v?).

Proof: There aren - ¢” quantitieng(:cNm) to compute. Then,
for a given site; and a given configuratiory(;), the compu-

tation of ~* ZyN(i) (HjeN(i) C57 (5 |5Uj))) Ti(Yn ), 0i(Yn(iy))
requires at most” summationsy products, and the evaluation of
Cch (y%|x;). This last evaluation is of complexity- o - ¢~ ': sum
over each possible state of sitat the previous time step and compu-
tation of the approximated transition probabilities asextptions of
products of/+ 1 terms. The discount factef’ ensures that the preci-

sion required is reached for a time> Kllr'l‘(f)) . Finally, the complex-

ity of the Approximate Policy Evaluation @(In(1/¢)-n-c" -v?).0

3.4 Approximate Policy Improvement

In order to reduce the search space, we limit the search aberpp
imately optimal policies among local ones (even if in gehérare
is no guarantee that there exist a local policy which is opbjnThis
allows a reduction in representation space and in time cexitgl
Using the mean field approximation & and the local properties of
rewards and transition probabilities, the exact maxinosat

§'(2) = argmax (r(z,0) +7- Y p(yle,a) - Va(y)), Va.
yeX

is replaced by the search of the arguments of the maximumeof th

expressions :

> rileney )+ Y ( 11 pj(yj|$N(j)7aj)V(si(yNu)))

i YN(G) JEN(D)

—+o0o
S0 >0 (I 67 wilen) - riluney 6iluncy))

Vi, S?H(:c) = arg max ri(@TN@y, ai) + ¥

a;€A;

> >

ks.ti€N(k) YN (k)
II »iwilen, 5?($N(j>))) pilyilenay, ai) - V‘;(ymk))} '
JEN (k)i

This is not enough since thiéh component of the solution still de-
pend onz (N (). SO, we replace the transition probabilitigs by
appropriate mean values, in order to restrict dependerasdsllows

(i ) mei)\{i} pi(yi|xN(i)7ai)
Pi\Yi|TN @), Qi) =
® card(XNm\{i})
if j € N(0):
Danonis PiWilTNG) 05 (@N )

~
~

Pi(yjlenG): 6(@ne)))
i (Yj (4) (4) card(Xningy)

if j ¢ N(i):

20, Pi(WslenG), 05 (TN )
card(X;)

piWilzng), 0(zn))) =

Proposition 3 (Complexity of Approximate Policy Update) The
Approximate Policy Update step is of complexityn.a.v?.c?").

Proof: The maximisation is performed for all sites, and is oser
terms at most. The computation of the approximate versioaxef
pression ??) requires at most.c” summations and products. One
element of the product is computed eithemwif or in o operations.
This leads to a complexity of at moSt(n.a.v?.6%).0

3.5 Experimental evaluation of API

We first tested the mean field approximation of Badicy Iteration
(MF-PI) algorithm on problems of small size, where the exact
solution of the PI algorithm for standard MDP is availableprder

to assess the quality of the approximate policies returyed®-Pl.
The first toy example used is the one presented in SectiomAe.
parameters were set o = 0.2, = 0.01,¢ = 0.9. The second
example is an extension to four states per node: the stasdthiye
and three states of increasing severity in the case of acteddield.

Example T
7 [ _efor | CPUMF | CPUPT|——&rror EX?{S'EJ'?\AZF CPUP]
I 0% 144 T0IT |30 12 06
4| 6.5% 5.75 6552 || 7 | 3.6% 574 21200
5 | 33% 6.78 | 45454 |4 1 366 | B4
6 | 101% | 907 | 34856

Table 2. Mean relative error (in percentage) between the optimatypol
and the estimated one, and computation time.



In both cases, the graphs were generated randomly, with a maxime provided that the graph width remains small. The quadis as-

imum size of N(¢) of 3. For varying values of, we observed a
limited loss in the quality of the optimal policy (with a meagia-
tive error no more than 10 %, see Table 2) and a significantigain
time complexity (see Figure 2). We observe a linear proguasst
the CPU time required by MF-PI with respect to the number alfieso
(see Figure 2). Implementation was done in Scilab, on a duadr
cessor PC with four Intel 2.40 GHz processors with 512 Ko ohea

“Time required by Mean Field and Policy Iteration
25000

Mean
Policy Iteration -
20000

15000

CPU time (s)

10000

5000

Figure 2. CPU times required by MF-PI and by exact PI

sociated with this gain in time complexity is not known yebwéver,
experiments showed that it is limited. In particular, th@ragimate
algorithm greatly improves the greedy short-term solutidrich is
usually the only one available in problems of high dimension

Our approach should be contrasted to [2, 7, 5] which are also
devoted to FMDP. [2] usealgebraic decision diagramgADD) to
model and solve FMDP and [7, 5] uselinear programmingap-
proach. [5] propose a method to tackle FMDP with multipleisiea
variables based on the idea of sampling the (exponentia) siet
of constraints generated by a linear programming (LP) niiogedf
a FMDP. However, to keep acceptable probabilistic boundshen
quality of the returned policy, the sample size should renmb-
portional to the number of possible actions, i.e. expoaériti the
number of decision variables. [7] instead consider the texBcbut
propose a specificariable eliminationmethod which take the struc-
ture of the LP into account in order to solve it exactly. [7]rie out
experiments in which his method outperforms that of [5] wites
same computation time is allowed to both methods.

[2, 7, 5] can only handle problems with a small number of denis
variables and are thus inadequate to solve GMDP. Incil]abora-
tive multi-agent factored MDPRwhich are more general than GMDP,

In a second set of experiments, we compared the relativerperf are studied and approximately solved by a dedicated ahgoriThe
mance of the MF-PI and the greedy (maximising the local imme-gmpirical comparison between this algorithm and ours haseen

diate rewards) policies for graphs of larger size, on théler of
epidemiology control (version with three states of disesesesrity).
Graph of dependencies were generated randomly and the MRePI
the greedy policies were computed and their values wermatstt
using Monte Carlo simulations. Figure 3 illustrates thengaithe
empirical value using MF-PI instead of the greedy policyaaser-
age over 5 problems, 10 initial states per problem, and sition of
100 trajectories of length 20.

Values MF and greedy Ratio of values MFigreedy

Ratio

Ratio

Figure 3. Left: estimated mean values of the MF-PI and the greedy
policies, Right: estimated mean value of the ratio of the RIfpolicy value
over the greedy policy value.

4 Concluding remarks

In this paper, we described a specific form of factored MDP NI
which uses a graph-based representation of local deperdetize
GMDP framework. The specificities are: first, each decisiodenis
the parent of exactly one state and no two decision nodestaohad

to the same state node. second, the scope of each rewardshodgej

included in the set of parents of one state variable and nogéward
nodes are attached to the same state variable.

An important feature of GMDP is that they admit problem and

approximately optimal solution representations in spawal in the
size of the underlying graph. However, classical DynamimgPam-
ming algorithms use space and time exponential in the sizbeof
graph to compute optimal solutions. We have proposed aro&ppr

matePolicy Iterationalgorithm which requires only linear space and

performed yet, but the complexity of this algorithm is quatilr in
the number of decision variables, while ours is linear.

Finally, [6] propose a LP-based method for solving GMDP, de-
rived from the method of [7]. Experiments led so far show thatn
if this approach differs from ours, the returned policiesehaimilar
values, and the CPU times are linearly related. We are dlyren
vestigating the benefits of each method, in particular thbility to
face the following generalisation of GMDP. An important @sp-
tion of the GMDP framework is that the action spadeds a cross
product ofindependentocal action spacesi;. However, this as-
sumption should be relaxedi(becoming a strict subset ¢, .A;),
as soon as we want to model resource allocation or local iEontst
between the actions. Relaxing this independence assumgéarly
affects the approximation method suggested in this papewarare
currently exploring the effects of this relaxation.
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