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Abstract

We study the properties of variational Bayes approximations for
exponential family models with missing values. It is shown that the
iterative algorithm for obtaining the variational Bayesian estimator
converges locally to the true value with probability 1 as the sample
size becomes indefinitely large. Moreover, the variational posterior
distribution is proved to be asymptotically normal.
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1 Introduction

Variational Bayes approximations have recently been applied to complex
models involving incomplete-data for which computational difficulties arise
with the ideal Bayesian approach. Such models include hidden Markov mod-
els and mixture models; see for example [1, 2, 3, 6, 9, 10, 12, 13, 17]. In
these earlier contributions, the approximations were shown empirically to be
convergent and effective. However little has been done to investigate their
theoretical properties.

Hall, Humphreys and Titterington [7] initiated a discussion of these is-
sues and proved that, for certain Markov models, the parameter estimator
obtained by maximising the variational lower bound function is asymptoti-
cally consistent provided the proportion of all values that are missing tends
to zero. Later we proved in [16] that it is not always the case that a fully fac-
torised form of variational posterior, which includes the factorisation of the
joint probability function for the hidden states, provides an asymptotically
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consistent estimator as the ‘sample size’ becomes large. We demonstrated
this in particular in the context of linear state space models, in which the
above sufficient condition obviously does not hold. On the other hand we
showed in [15] that variational Bayes estimators for certain mixture models
are asymptotically efficient for large sample sizes.

In this paper we study the properties of variational approximation al-
gorithms for more general models, namely exponential family models with
missing values. Exponential families include distributions such as Gaus-
sian, gamma, Poisson, Dirichlet and Wishart, and exponential family models
with missing values contain many models of practical interest as particular
cases, such as Gaussian mixtures, hidden Markov models and linear state
space models. Beal [3] and Ghahramani and Beal [6] applied the variational
Bayesian method to these models and derived the iterative algorithm for
learning the approximate posterior distributions of the latent states and the
model parameters. The numerical expriments therein show empirically that
this algorithm is convergent and efficient. In this paper we derive the itera-
tive procedure for obtaining the variational Bayesian estimator, we provide
analytical proofs of local convergence of the procedure as the sample size
tends to infinity, and we show that the variational posterior distribution for
the parameters is asymptotically normal.

2 Exponential family models with missing val-

ues and variational approximations

We consider the following exponential family models with missing values.
Suppose that P = {Pθ : θ ∈ IRm} is a family of probability distributions on
a measurable space (Ω,F), and that x and y are sampled from the natural
exponential family:

p(x, y|θ) = f(x, y) exp{θ>u(x, y)− ψ(θ)} (1)

with x taking values in IRd and y in IRp, where θ ∈ IRm is the unknown
parameter, and ψ(·) : IRm 7→ IR is continuously differentiable and strictly
convex. The parameter θ has a conjugate prior to the complete-data likeli-
hood (1), with density

p(θ|α0, β0) = h(α0, β0) exp{θ>β0 − α0ψ(θ)}, (2)

where h is a normalising constant satisfying

h(α, β)−1 =

∫
exp{θ>β − αψ(θ)}dθ, (3)
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and α0 ∈ IR, β0 ∈ IRm are the hyperparameters of the prior.
Suppose that only y is observable whereas x is latent. We have a data-

set consisting of a random sample of size n, with Y = (y1, y2, . . . , yn) and
X = (x1, x2, . . . , xn). In the Bayesian framework we want to infer the pos-
teriors over both the parameters and the hidden states. Unfortunately exact
Bayesian inference is generally time-consuming, if not impossible, especially
for large dimensionality m. Therefore approximation is usually necessary
in these cases. In the variational approach, the true posterior p(X, θ|Y )
is approximated by the variational distribution q(X, θ), which factorises as
q(X, θ) = qX(X)qθ(θ), and is chosen to maximise the functional∫

q(X, θ) log
p(θ,X, Y )

q(X, θ)
dθdX, (4)

equivalent to minimising the Kullback-Leibler divergence between the exact
and approximate distributions of θ and X, given Y .

The functional (4) can be maximised using the following iterative proce-
dure (see [3, 6]). In turn, the following two stages are performed.

(i) Optimise qθ(θ) for fixed {qxi(xi), i = 1, . . . , n}. This step results in

qθ(θ) = h(α, β) exp{θ>β − αψ(θ)}, (5)

where α and β are the hyperparameters of the variational posterior and are
updated by

α = n+ α0, β =
n∑
i=1

ri + β0, and ri = 〈u(xi, yi)〉xi . (6)

Here 〈·〉xi denotes the expectation under qxi(xi).
(ii) Optimise qX(X) for fixed qθ(θ). This leads to the factorised form

qX(X) =
∏n

i=1 qxi(xi), where

qxi(xi) = f(xi, yi)g(θ, yi) exp{〈θ〉>θ u(xi, yi)− ψ(〈θ〉θ)}, (7)

in which g(θ, yi) is a normalising constant satisfying

g(θ, yi)
−1 =

∫
f(xi, yi) exp{〈θ〉>θ u(xi, yi)− ψ(〈θ〉θ)}dxi, (8)

and 〈·〉θ denotes the expectation under qθ(θ).
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3 The iterative algorithm and its convergence

We define the variational Bayesian estimator θ̂ of the parameter θ as

θ̂ =

∫
θqpos(θ)dθ,

where qpos is the variational posterior density of θ, given by the limiting form
of qθ(θ) that results from the above iterative procedure. For the exponential
family distribution (5) the corresponding variational Bayesian estimator is

θ̂ =

∫
θqθ(θ)dθ = −Dβh(α, β)

h(α, β)
.

(Throughout the paper, DΨ and D2Ψ denote the gradient and the Hessian
of Ψ. When ambiguity exists, the specific variable of differentiation appears
as a subscript of the symbol D and D2.)

Thus, the procedure in the previous section can be used to derive the fol-
lowing algorithm for obtaining the variational Bayesian estimate of θ: start-
ing with some initial value θ(0), successive iterates are defined inductively
by

θ(k+1) , Φn(θ(k)) = −Dβh(α, β)

h(α, β)
, (9)

where α and β are given as in (6), and

qxi(xi) = f(xi, yi)g(θ(k), yi) exp{(θ(k))>u(xi, yi)− ψ(θ(k))},

g(θ(k), yi)
−1 =

∫
f(xi, yi) exp{(θ(k))>u(xi, yi)− ψ(θ(k))}dxi.

It is of interest to investigate the questions of whether or not the algorithm
(9) is convergent and, if so, what properties are possessed by the limiting
value. The following theorem gives a partial answer.

Theorem 1. With probability 1 as n approaches infinity, the iterative pro-
cedure (9) converges locally to the true value θ∗, i.e. (9) converges to θ∗

whenever the starting value is sufficiently near to θ∗.

Proof. Denote by DΦn(θ∗) the gradient of Φn(θ) evaluated at θ∗ and write β
and ri as β(θ) and ri(θ) to indicate explicitly their dependence on θ. From
(9) one has

DΦn(θ∗) =
Dβh(α, β)D>β h(α, β)− h(α, β)D2

βh(α, β)

h2(α, β)
Dβ(θ∗).
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Here h and its derivatives are evaluated at θ∗.
From (6) we have that Dβ(θ) =

∑n
i=1 Dri(θ) and

Dri(θ
∗) =

∫
u(xi, yi)D

>
θ qxi(xi)dxi

=

∫
u(xi, yi)f(xi, yi)D

>
θ g(θ∗, yi) exp{θ∗>u(xi, yi)− ψ(θ∗)}dxi

+

∫
u(xi, yi)f(xi, yi)g(θ∗, yi) exp{θ∗>u(xi, yi)− ψ(θ∗)}

·
[
u>(xi, yi)−D>ψ(θ∗)

]
dxi

=

∫ [
u(xi, yi)−Dψ(θ∗)

]
f(xi, yi)D

>
θ g(θ∗, yi) exp{θ∗>u(xi, yi)− ψ(θ∗)}dxi

+

∫
f(xi, yi)g(θ∗, yi) exp{θ∗>u(xi, yi)− ψ(θ∗)}

·
[
u(xi, yi)−Dψ(θ∗)

][
u>(xi, yi)−D>ψ(θ∗)

]
dxi,

where in the last equality we used the fact that∫ [
u(xi, yi)−Dψ(θ∗)

]
f(xi, yi)g(θ∗, yi) exp{θ∗>u(xi, yi)− ψ(θ∗)}dxi

+

∫
f(xi, yi)Dθg(θ∗, yi) exp{θ∗>u(xi, yi)− ψ(θ∗)}dxi = 0, (10)

which is obtained by differentiating, with respect to θ∗,∫
f(xi, yi)g(θ∗, yi) exp{θ∗>u(xi, yi)− ψ(θ∗)}dxi = 1.

Since it follows from (8) that

Dθg(θ∗, yi) = −
∫
f(xi, yi) exp{θ∗>u(xi, yi)− ψ(θ∗)}

[
u(xi, yi)−Dψ(θ∗)

]
dxi

·
{∫

f(xi, yi) exp{θ∗>u(xi, yi)− ψ(θ∗)}dxi
}−2

,

equality (10) can be rewritten as∫ [
u(xi, yi)−Dψ(θ∗)

]
f(xi, yi)g(θ∗, yi) exp{θ∗>u(xi, yi)− ψ(θ∗)}dxi

·
∫
f(xi, yi) exp{θ∗>u(xi, yi)− ψ(θ∗)}dxi

=

∫
f(xi, yi) exp{θ∗>u(xi, yi)− ψ(θ∗)}

[
u(xi, yi)−Dψ(θ∗)

]
dxi. (11)
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Differentiating both sides of (11) with respect to θ∗, we have{∫ [
u(xi, yi)−Dψ(θ∗)

]
f(xi, yi)D

>
θ g(θ∗, yi) exp{θ∗>u(xi, yi)− ψ(θ∗)}dxi

−D2ψ(θ∗) +

∫
f(xi, yi)g(θ∗, yi) exp{θ∗>u(xi, yi)− ψ(θ∗)}

·
[
u(xi, yi)−Dψ(θ∗)

][
u>(xi, yi)−D>ψ(θ∗)

]
dxi

}
·
∫
f(xi, yi) exp{θ∗>u(xi, yi)− ψ(θ∗)}dxi

+

∫ [
u(xi, yi)−Dψ(θ∗)

]
f(xi, yi)g(θ∗, yi) exp{θ∗>u(xi, yi)− ψ(θ∗)}dxi

·
∫
f(xi, yi) exp{θ∗>u(xi, yi)− ψ(θ)}

[
u>(xi, yi)−D>ψ(θ∗)

]
dxi

=

∫
f(xi, yi) exp{θ∗>u(xi, yi)− ψ(θ∗)}

[
u(xi, yi)−Dψ(θ∗)

][
u>(xi, yi)−D>ψ(θ∗)

]
dxi

−
∫
f(xi, yi) exp{θ∗>u(xi, yi)− ψ(θ∗)}dxi ·D2ψ(θ∗). (12)

Write φ = u(xi, yi)−Dψ(θ∗). The marginal distribution of yi is
∫
p(xi, yi|θ∗)dxi,

and therefore it follows from the strong law of large numbers that, with prob-
ability 1,

1

n

n∑
i=1

∇θri

→
∫ {
∇θri

∫
p(xi, yi|θ∗)dxi

}
dyi

=−
∫ {

IExi [φ]IExi [φ
>]

∫
f(xi, yi) exp{θ∗>u(xi, yi)− ψ(θ∗)}dxi

}
dyi +D2ψ(θ∗)

=D2ψ(θ∗)− IEyi

{
IExi [φ]IExi [φ

>]
}
,

where we have used equality (12) and the fact that∫
f(xi, yi) exp{θ∗>u(xi, yi)− ψ(θ∗)}

·
[
u(xi, yi)−Dψ(θ∗)

][
u>(xi, yi)−D>ψ(θ∗)

]
dxidyi = D2ψ(θ∗), (13)

and IExi denotes expectation under qxi .
Thus, we obtain

1

n
Dβ(θ∗)→ D2ψ(θ∗)− IEyi

{
IExi [φ]IExi [φ

>]
}
, a.s., (14)
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where ’a.s.’ means ’almost surely’.
Similarly, one has

1

n
β(θ∗)→ Dψ(θ∗), a.s. (15)

For convenience we write h(α, β)−1 evaluated at θ∗ as h̃(α, β), from which

Dβh̃(α, β) =

∫
exp{θ>β − αψ(θ)}θdθ,

D2
βh̃(α, β) =

∫
exp{θ>β − αψ(θ)}θθ>dθ.

Let b(·) : IRm 7→ IR be a four-times continuously differentiable function
of θ and write

an(θ) = (1 +
α0

n
)ψ(θ)− θ>(

1

n

n∑
i=1

ri +
β0

n
), (16)

hb =

∫
b(θ) exp{−nan(θ)}dθ. (17)

Since ψ(θ) is continuously differentiable and strictly convex, it is obvious that
an(θ) is also continuously differentiable and strictly convex in θ. Therefore
an(θ) has a unique global minimiser, denoted by θ̂n, which also satisfies the
equation

Dψ(θ) = (
1

n

n∑
i=1

ri +
β0

n
)
/

(1 +
α0

n
). (18)

Under these conditions, in the Appendix we show the validity of Laplace’s
method by verifying the assumptions of Kass, Tierney and Kadane [11].
Hence application of Laplace’s approximation yields∫

b(θ) exp{−nan(θ)}dθ = (2π)m/2[det(nD2an)]−1/2 exp{−nan(θ̂n)}

·
{
b(θ̂n) +

1

n

[1

2

m∑
i,j=1

σijn bij −
1

6

m∑
i,j=1
k,s=1

aijkn bsµ
4
ijks

+
1

72
b(θ̂n)

m∑
i,j,k=1
q,r,s=1

aijkn hqrsn µ6
ijkqrs

− 1

24
b(θ̂n)

m∑
i,j=1
k,s=1

aijksn µ4
ijks

]
+O(n−2)

}
, a.s. (19)
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where µ4
ijks and µ6

ijkqrs are the fourth and sixth central moments of a multi-
variate normal distribution having covariance matrix (D2an)−1; that is,

µ4
ijks =σijn σ

ks
n + σikn σ

js
n + σisn σ

jk
n ,

µ6
ijkqrs =σijn σ

kqσrsn + σijn σ
krσqsn + σijn σ

ksσqrn

+ σikn σ
jqσrsn + σikn σ

jrσqsn + σikn σ
jsσqrn

+ σiqn σ
jkσrsn + σiqn σ

jrσksn + σiqn σ
jsσkrn

+ σirn σ
jkσqsn + σirn σ

jqσksn + σirn σ
jsσkqn

+ σisn σ
jkσqrn + σisn σ

jqσkrn + σisn σ
jrσkqn ,

where D2an denotes the Hessian of an, its (i, j)-component is written as
aijn and the components of its inverse are written as σijn ; moreover, bs and
bij denote the components of the first- and second-order derivatives of b,

respectively. All derivatives are evaluated at θ̂n.
It is obvious that D2an converges to D2ψ with probability 1 as n → ∞.

Letting b(θ) be 1, θi and θiθj (i, j = 1, . . . ,m) correspondingly in (19) and
after a straightforward calculation, we obtain that, as n tends to infinity,
with probability 1,

nD2,ij
β h̃(α, β)h̃(α, β)− nDi

βh̃(α, β)Dj
βh̃(α, β)

h̃2(α, β)
→ 1

2
σij∞ =

1

2
[D2ψ(θ)]−1

ij .

Therefore, combining (14) with the last limiting result we obtain that,
with probability 1,

DΦn(θ∗)→1

2
[D2ψ(θ∗)]−1

[
D2ψ(θ∗)− IEyi

{
IExi [φ]IExi [φ

>]
}]

=
1

2
Im −

1

2
[D2ψ(θ∗)]−1IEyi

{
IExi [φ]IExi [φ

>]
}
,

where Im denotes the m×m identity matrix.
Since ψ is continuously differentiable and strictly convex, D2ψ(θ∗) is

positive definite and symmetric. Obviously IEyi

{
IExi [φ]IExi [φ

>]
}

is positive
semidefinite and symmetric. Hence, as n tends to infinity, DΦn(θ∗) ≤ 1

2
Im;

that is, DΦn(θ∗)− 1
2
Im is negative semidefinite.

Next we show that

[D2ψ(θ∗)]−1IEyi

{
IExi [φ]IExi [φ

>]
}
≤ Im.

Since D2ψ(θ∗) is positive definite and symmetric, it is sufficient to prove that

θ>IEyi

{
IExi [φ]IExi [φ

>]
}
θ ≤ θ>D2ψ(θ∗)θ, (20)
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for any θ ∈ IRm.
In fact, we have

θ>IEyi

{
IExi [φ]IExi [φ

>]
}
θ

=IEyi

{ m∑
j,k=1

θjθkIExi [φj]IExi [φk]
}

=IEyi

{ m∑
j,k=1

θjθkIExi [φjφk]−
m∑

j,k=1

θjθkIExi

[
(φj − IExi [φj])(φk − IExi [φk])

]}
=IEyi

{ m∑
j,k=1

θjθkIExi [φjφk]− θ>IExi

[
(φ− IExi [φ])(φ− IExi [φ])>

]
θ
}

≤
m∑

j,k=1

θjθkIEyi

{
IExi [φjφk]

}
=θ>D2ψ(θ∗)θ,

where the last equality is a consequence of (13).
Therefore, we obtain

0 ≤ DΦn(θ∗) ≤ 1

2
Im.

Moreover, if we use Laplace’s approximation (19) it is easy to deduce that
Φn(θ∗) = −Dβh(α, β)/h(α, β)→ θ∗ with probability 1 as n tends to infinity.

Define the norm of θ ∈ IRm as ‖θ‖ , (θ>θ)1/2 and the norm of the real
m×m matrix A as ‖A‖ , sup‖θ‖=1 ‖Aθ‖. Therefore, since the starting value
is sufficiently near to θ∗ we have

‖θ(k+1) − θ∗‖ ≤‖Φn(θ(k))− Φn(θ∗)‖+ ‖Φn(θ∗)− θ∗‖
≤‖∇Φn(θ∗)‖ · ‖θ(k) − θ∗‖+ ‖Φn(θ∗)− θ∗‖
= sup
‖θ‖=1

|θ>∇Φn(θ∗)θ| · ‖θ(k) − θ∗‖+ ‖Φn(θ∗)− θ∗‖

≤1

2
‖θ(k) − θ∗‖+ ‖Φn(θ∗)− θ∗‖,

and therefore the iterative procedure (9) converges locally to the true value
θ∗ with probability 1 as n approaches infinity .
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4 Asymptotic normality of the variational pos-

terior distribution

There have been a large number of contributions about the asymptotic nor-
mality of posterior distributions including exponential families; see for in-
stance Walker [14], Heyde and Johnstone [8], Chen [5] and Bernardo and
Smith [4]. Under appropriate conditions the (true) posterior density con-
verges in distribution to a normal density. In this section, we show that the
variational posterior distribution for the parameter θ obtained by the itera-
tive procedure has also the property of asymptotic normality. This implies
that the variational posterior becomes more and more concentrated around
the true parameter value as the sample size grows.

Suppose the sample size n is large. We have proved that the algorithm (9)
is convergent, so there exists an equilibrium point denoted by θ̃n. It follows
from (5) and (7) that, at θ̃n,

α̃n = n+ α0, β̃n =
n∑
i=1

ri + β0, ri = 〈u(xi, yi)〉xi ,

q(xi) = f(xi, yi)g(θ̃n, yi) exp{θ̃>n u(xi, yi)− ψ(θ̃n)}.

Therefore, the variational posterior density of θ at the equilibrium point is

qn(θ) = h(α̃n, β̃n) exp{θ>β̃n − α̃nψ(θ)}. (21)

Let θ̂n maximise θ>β̃n − α̃nψ(θ). Then we have

Dψ(θ̂n) = (
1

n

n∑
i=1

ri +
β0

n
)
/

(1 +
α0

n
).

By the same arguments as used in the previous section and noting that
θ̃n → θ∗ with probability 1 by Theorem 1, we have that 1

n

∑n
i=1 ri converges

to Dψ(θ∗) almost surely. Since Dψ is strictly increasing and continuous,
θ̂n → θ∗ with probability 1 as n tends to infinity.

Define

Ln(θ) , log qn(θ) = log h(α̃n, β̃n) + θ>β̃n − α̃nψ(θ).

Then we have

Σn , −[D2Ln(θ̂n)]−1 = [(n+ α0)D2ψ(θ̂n)]−1.
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Denote by B(θ, ε) the open ball of radius ε centred at θ. According to
Chen [5], under the assumption of the consistency of θ̂n for θ∗, the poste-
rior density qn converges in distribution to N (θ̂n,Σn) if the following basic
conditions hold.

(C1) “Steepness”. σ2
n → 0 with Pθ∗-probability 1 as n→∞, where σ2

n is
the largest eigenvalue of Σn.

(C2) “Smoothness”. For any ε > 0, there exists an integer N and δ > 0
such that, for any n > N and θ ∈ B(θ, δ), D2Ln(θ) exists and satisfies

Im − A(ε) ≤ D2Ln(θ)[D2Ln(θ̂n)]−1 ≤ Im + A(ε), a.s.,

where A(ε) is an m×m symmetric positive semidefinite matrix whose largest
eigenvalue tends to zero with Pθ∗-probability 1 as ε→ 0.

(C3) “Concentration”. For any δ > 0,
∫
B(θ,δ)

qn(θ)dθ → 1 with Pθ∗-

probability 1 as n tends to infinity.

In fact, since θ̂n → θ∗, the components of D2ψ(θ̂n) are bounded above
and away from 0 almost surely if n is large enough, so the largest eigenvalue
of Σn tends to 0.

(C2) is obvious because D2Ln(θ)[D2Ln(θ̂n)]−1 = D2ψ(θ)[D2ψ(θ̂n)]−1 and
ψ(·) is continuously differentiable.

From Kass, Tierney and Kadane [11], assumption (iii) in the Appendix
is stronger than (C3). Therefore all the conditions are verified.

Acknowledgement. This work was supported by a grant from the UK
Science and Engineering Research Council.

Appendix. We show that under our framework the Laplace approxi-
mation (19) is justified. The proof consists of verifying the analytical as-
sumptions for Laplace’s method in Kass, Tierney and Kadane [11], which are
listed here for convenience. Since an defined in (16) is of random nature,
some minor revisions are made to adapt our settings.

Suppose that {an : n = 1, 2, . . . } is a sequence of six-times continuously
differentiable real functions and that b is a four-times continuously differ-
entiable function of θ. The pair ({an}, b) is said to satisfy the analytical
assumptions for Laplace’s method if there exist positive numbers ε, M and
η, and an integer n0 such that n > n0 implies the following:

(i) for all θ ∈ B(θ̂n, ε) and all 1 ≤ j1, . . . , jd ≤ m with 0 ≤ d ≤ 6,
|∂j1···jdan(θ)| < M with Pθ∗-probability 1;

(ii) det(D2an(θ̂n)) > η with Pθ∗-probability 1;
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(iii) the integral hb defined in equation (17) exists and is finite, and for
all δ for which 0 < δ < ε,[

det(nD2an(θ̂n))
]1/2 ∫

θ 6∈B(θ̂n,δ)

b(θ) exp{−n(an(θ̂n)− an(θ))}dθ = O(n−2)

with Pθ∗-probability 1; or, more strongly,
(iii’) for all δ for which 0 < δ < ε,

lim sup
n→∞

sup
θ
{an(θ̂n)− an(θ) : θ 6∈ B(θ̂n, δ)} < 0

with Pθ∗-probability 1.

Under our assumptions, it has been shown in (15) that 1
n

∑n
i=1 ri →

Dψ(θ∗) with probability 1, so, when n large enough, 1
n

∑n
i=1 ri is almost

surely bounded in B(θ̂n, ε). Since ψ is continuously differentiable (i) obvi-
ously holds.

Condition (ii) is clear because ψ is strictly convex.
As n tends to infinity, for any θ ∈ IRm, an(θ) converges with Pθ∗-probability

1 to
a0(θ) = ψ(θ)− θ>Dψ(θ∗).

Since θ̂n maximises an, we have

θ̂n = (Dψ)−1
(
(
1

n

n∑
i=1

ri +
β0

n
)
/

(1 +
α0

n
)
)
,

so it follows that, as n tends to infinity, with probability 1,

θ̂n → (Dψ)−1
(
Dψ(θ∗)

)
= θ∗.

Therefore, for all δ for which 0 < δ < ε and θ 6∈ B(θ̂n, δ), we have that,
∀ε0 satisfying 0 < ε0 < δ/2, there exists an integer N such that, if n > N , it
holds that, for all θ ∈ IRm,

|an(θ)− a0(θ)| < ε0,

‖θ̂n − θ∗‖ < ε0, a.s.

|a0(θ̂n)− a0(θ∗)| < ε0, a.s.

Thus,

an(θ̂n)− an(θ) = an(θ̂n)− a0(θ̂n) + a0(θ̂n)− a0(θ∗)

+ a0(θ∗)− a0(θ) + a0(θ)− an(θ)

< a0(θ∗)− a0(θ) + 3ε0, a.s.
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so that

sup{an(θ̂n)− an(θ) : θ 6∈ B(θ̂n, δ)}
≤ sup{a0(θ∗)− a0(θ) : θ 6∈ B(θ̂n, δ)}+ 3ε0

≤ sup{a0(θ∗)− a0(θ) : θ 6∈ B(θ∗, δ − ε0)}+ 3ε0, a.s. (22)

since B(θ∗, δ − ε0) ⊂ B(θ̂n, δ).
Since a0(·) is strictly convex, for θ 6∈ B(θ∗, δ−ε0), we have a0(θ)−a0(θ∗) >

c, where c = inf{a0(θ) − a0(θ∗) : θ lies in the boundary of B(θ∗, δ/2)} > 0.
Consequently, we get

sup{a0(θ∗)− a0(θ) : θ 6∈ B(θ∗, δ − ε0)} ≤ −c.

Combining the last estimate with (22) we have that, ∀ε0 satisfying 0 <
ε0 < δ, there exists an integer N such that n > N implies

sup{an(θ̂n)− an(θ) : θ 6∈ B(θ̂n, δ)} ≤ −c+ 3ε0, a.s.;

that is, (iii’) holds.
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