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Abstract

Models of infectious disease that do not confer permanent immunity are char-

acterized by a phase transition: rapid extinction or persistence. A current

challenge is to understand how the geometry of the interaction network as-

sociated with the disease can influence prevalence close to the critical point.

Here, we bring new insights on how to introduce explicitly the network struc-

ture in the model to study this influence. To cope with the model complex-

ity, we consider moment closures. Moment closures do not provide satisfying
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estimation close to the critical value. Therefore, we propose a method to

introduce longer range correlations in the closures. This method is techni-

cally simple, remains computationally reasonable and significantly improves

approximation performance. Extended closures provide a tool to quantify

the influence of the clustering coefficient and of new descriptors of a graph

organization, the square clustering coefficient. We also compare the relative

performance of different forms of closure from the literature, with or without

extension. The normalized version of the Bethe approximation, extended

within our frameworks, appears as a good candidate to study the influence

of the graph features. Numerical results illustrate the role of the clustering

and square clustering coefficients for low and median values of the transmis-

sion rate of the disease and the importance of path redundancy on prevalence.

Keywords: Contact process; Interaction network structure; Long range

correlation; Moment closure; Phase transition.
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1 Introduction

Infectious diseases where permanent immunity is not possible are classically

represented as a SIS system which can be implemented on a lattice, or more

generally on a graph. This model is characterized by the existence of two

possible dynamics: either a rapid extinction of the disease or, at the oppo-

site, its persistence over a long time (metastability on a finite lattice). This

change of behaviour can be defined as a phase transition (rigorously, a phase

transition occurs only on infinite size lattices or graphs), linked with the

disease properties (e.g. transmission rate). The value of the parameter for

which such a change occurs is a critical value. Critical values have received

considerable attention in the study of systems in statistical physics, because

(i) they enable to define ranges of parameters values where the qualitative

behaviour of the system is unchanged, as sets bound by critical values (ii)

classical approximations such as mean field approximation are known to yield

tractable and reasonable estimates for variables of interest far from critical

values, whereas approximation quality may break down close to them. For

infectious diseases, studying the critical value is relevant for understanding

both outbreak and prevalence close to transition. A better knowledge of

the factors influencing theses values is important in order to improve control

strategies to prevent disease outbreak.

Infectious diseases are usually characterized by propagation by contact

between nearest neighbours. The geometric pattern of the connections be-

tween hosts, a contact enabling transmission, can efficiently be described by

a graph. The associated interaction network plays an important role in the

disease dynamics (Keeling 1999, Eguiluz and Klemm 2002, Keeling 2005,
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Colizza et al. 2006). In particular, its structure can influence the value of

the critical point of the phase transition. However, while the existence of

this influence is well known, it is still not fully understood which are the

important characteristics of the network controlling it, and how they affect

the disease, favoring or limiting the propagation. For a long time, classi-

cal graphs have been restricted to random graphs (mean field model when

complete, or island model) or connections to nearest neighbours on a lattice

(stepping stone model), but more realistic families of graphs have been pro-

posed recently in literature, each characterized by common values of degree

distribution, clustering coefficient, etc... (Albert and Barabási 2002 or New-

man 2003). In this paper, we propose geometric characteristics of the graphs

which can shed new light on understanding how the structure of a graph may

influence its function, here disease outbreak.

Individual based spatially explicit stochastic systems are called ”Inter-

acting Particle Systems” (Ligget 1985 or Durret and Levin 1994). IPS are

well adapted to capture the propagation of infectious disease (e.g. Keeling

1999). They are largely used in ecological dynamics when individual contacts

are through nearest neighbours too (Van Baalen and Rand 1998). However,

very few exact results are computable on these models, which can be stud-

ied mostly through simulations. IPS however can be simplified by ODE on

state variables, such as mean density of susceptible vertices. Critical val-

ues are often approximated by bifurcation points of these ODE. However,

examples of failure of such mean-field models close to the critical values,

assuming independence of the individuals, are numerous (Durret and Levin

1994, Dieckmann et al. 2000, Part B, Filipe and Gibson 1998, Keeling 2005).

Therefore, considerable attention has been paid in literature to design ap-
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proximations which behave better than mean field approximations, closer to

the critical values of the parameters. Such methods are often referred to as

moment closure methods (Bolker and Pacala 1997), such as Pair approxi-

mation (Matsuda et al. 1992) or cluster variation methods (Kikuchi 1951

or Lavis and Bell 1999) like Bethe approximation, etc. ... These methods

are well-known and largely used in theoretical epidemiology or ecology (e.g.

Dieckmann et al. 2000). However, all these classical methods take into ac-

count the graph structure in a limited way only and cannot be used as such

to study the interaction network influence.

Analytically tractable models such as the Ising model teach us that ap-

proximations breakdown because long range correlations, ignored in the sim-

plifications, do not fade away close to the critical point (Marro and Dick-

man 1999, Snyder and Nisbet 2000, Dickman and Martins de Oliveira 2005).

Hence, one way to improve upon classical approximations is to take into

account, when possible, long range correlations, in addition to correlations

between nearest neighbours, as in classical Pair and Bethe approximations

on graphs. Here, we start from several published approximations relying on

correlations between nearest neighbours only, and propose for each of them

new types of approximation by taking into account correlations at distances

larger than one. We show that, in some cases, this leads to better estima-

tion of the critical value of the parameter, as well as of the prevalence of the

disease. In addition, these new approximations enable to explicitly take into

account some features of the graph and thus to study their influence on the

prevalence. Let us note that this is one of several ways to improve classical

approximations: Petermann and De Los Rios (2004a) have suggested im-

provements through careful examinations of local patterns of size larger than
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pairs, but with correlation between nearest neighbours only. If the method

improves the description of the dynamics for a given interaction network,

comparison of the same dynamics for varying values of some features of the

graph is not straightforward.

As a toy model, we consider the well-studied contact process (Harris 1974,

Marro and Dickman 1999), spatially explicit version of the SIS model, on a

graph. It has been used for modelling phenomena involving excitable media,

like fire models (Drossel and Schwabl 1992), or for modelling metapopula-

tions (Franc 2004). It has also been widely used to study the spread of

diseases within a population (Filipe and Gibson 1998, Pastor-Satorras and

Vespignani 2001, Eguiluz and Klemm 2002).

This paper is organized as follows: in Section 2, we define the contact

process and derive the open ODE system up to pairs dynamics. After intro-

ducing two classical closure methods, mean field and Bethe approximations

in Section 3, we illustrate on Bethe the methodological contribution of this

work: how to extend approximations based on nearest neighbours pairs to

longer range correlations (Section 4). From this, we propose new graph char-

acteristics with potential influence of the contact process dynamics. Section

5 presents other classical closures on which we apply the same extension.

Comparison of the different approximations, with and without long range

correlations, as well as the influence of graph features on prevalence are

illustrated on two homogeneous graphs (Section 6). We conclude with a

discussion including possible improvements on the method presented herein.
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2 The Contact Process

2.1 Definition

Let us consider a graph G = (V, E), defined by a set V of n vertices and a

set E of edges. Vertices represent individuals (plants, human beings, ...) and

edges represent possible paths for the disease propagation. On each vertex

i of the graph a random variable zi (the state of the vertex) is expressed,

taking values in a discrete space Ω = {0, 1}. The set Ω could be interpreted

as {succeptible, infected}, as in epidemiology, or {empty, occupied}, as in

metapopulation dynamics. We adopt here the first point of view. The states

of the graph’s vertices evolve according to epidemiological dynamics (infec-

tion and recovering).

We consider here a time-continuous contact process to model dynamics on

the graph. The rules for evolution are as follows (Harris 1974, Marro and

Dickman 1999, chapter 6): if i ∈ V is infected (zi = 1) it becomes susceptible

(zi = 0) with rate µ. As time units are arbitrary, we set µ = 1 in the follow-

ing, meaning that the expected time between a site infection and its recovery

is one unit of time. For the transmission probability, if i is susceptible and

has ai infected neighbours, it becomes infected with rate βai, with β being

the per site transmission rate:

P (zt+dt
i = 0|zt

i = 1) = dt

P (zt+dt
i = 1|zt

i = 0, ai = a) = aβdt (1)

The rate β is in fact dependent of the time unit. Indeed, if π is the proba-

bility that a transmission event occurs during period [t, t +△ t],with ai = a,

then 1 − π = exp−aβ △ t and β = −(ln(1 − π))/(a△ t). Thus, β and △ t

must be chosen such that π ≤ 1.
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This model exhibits a non-equilibrium phase transition (on an infinite graph):

below a value βc (the critical value) of the transmission rate β, no establish-

ment is possible and the only final global state is the one with all vertices

susceptible. Establishment is possible above βc.

2.2 Open system for dynamics equations

We will consider in this study homogeneous graphs, i.e. each vertex has the

same degree h, for sake of simplicity. The first quantity of interest to study

dynamics and equilibrium is ρ, i.e. the probability that a vertex is in state 1.

As contact process transmission can only be done at short distance, between

nearest neighbours, the evolution of ρ depends on the evolution of pairs of

vertices linked by an edge, It is described by Filipe and Gibson (1998) or

Peyrard and Franc (2005)

dρ

dt
= hβP (1)(01) − ρ (2)

with P (1)(01) being the probability that a pair of vertices linked by an edge

is in state 01. Here and in the following, the exponent (1) recalls that the

two sites of interest are linked by an edge (distance 1 pair).

Thus, we consider the evolution of P (1)(01). The probabilities for the other

configurations of a pair at distance 1 can be derived from ρ and P (1)(01).

The exact expression for the transients for P (1)(01) is given by

dP (1)(01)

dt
= P (1)(11) + β(h − 1)P (1,1)(100)

−P (1)(01)

[
1 + β + β(h − 1)

P (1,1)(101)

P (1)(01)

]
(3)

where P (1,1)(100) = P (zi = 1, zj = 0, zk = 0 | (i, j), (j, k) ∈ E) is the prob-

ability to observe a vertex j in state 0 and two of its neighbours in states
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0 (vertex k) and 1 (vertex i). It may seem complicated at first sight, but

is nothing more than a straightforward consequence of careful counting of

infection and recovery events starting from, or leading to, a pair 01 (see Ap-

pendix). Note that the three vertices do not play the same role here and

the ordering of the states in P (1,1)(100) is important. The triplet of sites can

either be closed (triangle) or open.

The system formed by equations (2) and (3) is not closed since the evo-

lution of the triplet probabilities is unknown. This requires the knowledge of

the evolutions of quadruplets and so on. Exact solving of the contact process

(transient and equilibrium) is not possible, because of this hierarchy of dy-

namics. We present in the following section a classical method to simplify the

model complexity leading to a system with a reduced number of equations.

3 Closure methods

To close a system like (2) and (3), the idea is to truncate the hierarchy at a

certain level (order) and to approximate all the higher joint probabilities as

functions of the lower ones. This technique is referred to as a closure method

and finds its origin in the cluster variation method, developed in the 1930’s

in solid state physics (see Kikuchi 1951, Lavis and Bell 1999). The intuitive

idea behind cluster variational method is to approximate the free energy re-

lated to a complex distribution by dealing exactly with subsets of nodes of

reasonable size (the clusters) and to approximate correlations between nodes

from different clusters (see Yedidia et al. 2005) for details on this and others

region-based approximations).
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The simplest closure is the closure at order one, namely the mean field

approximation. It consists of assuming well-mixing among the vertices, i.e.

each individual can have contact with all the others. This is equivalent

to assume that individuals are independent (P (1)(01) = ρ(1 − ρ)). The

corresponding approximated system reduces to a closed equation in ρ (Marro

and Dickman 1999), if we set hβ = λ:

dρ

dt
= λρ(1 − ρ) − ρ = rρ

(
1 −

ρ

K

)
(4)

which is the classical logistic equation with the rate of maximum population

growth, r, equal to λ and the carrying capacity, K, equal to 1 + λ−1. If

probabilities are replaced by proportions, one can recover the SIS model

often used in non-spatial epidemiology. This equation is simple to solve and

study, but except in particular cases (graphs with a high value of h, graphs

in high dimensions, or high prevalence) the mean field assumption of well-

mixing is too strong and the approximation is quantitatively poor (Durret

and Levin 1994, Filipe and Gibson 1998, Dieckmann et al. 2000, Keeling

2005).

We are interested here in order 2 approximations, meaning that pair cor-

relations are taken into account and that triplet probabilities are approxi-

mated in terms of singletons and pairs probabilities. Order 2 closures offer

a trade-off between precision and complexity. First, let us recall that one

of the quantities to approximate is P (1,1)(100). The approximation of the

triplet probability should take into account that some triplets of sites are

closed (triangle) and some are not. If θ is the clustering coefficient of the

graph, i.e. the probability that two neigbours of a same site are neighbours

to each others, then P (1,1)(100) can be decomposed as

P (1,1)(100) = θP 1,1,1(100) + (1 − θ)P 1,1,2(100) (5)
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P 1,1,1 and P 1,1,2 being respective probabilities for closed (△) and open (∧)

triplet configurations. The three indices give distances between sites. Param-

eter θ is one of the characteristics of the graph well known in graph theory

(Albert and Barabási 2002, Newman 2003).

Several forms have been proposed for the closure (see section 5 and Dis-

cussion). We present only one in this section, the Bethe approximation, as

an example to illustrate the method that we propose to improve classical

order 2 closures. In the case of a triangle, the Bethe approximation (BA)

(Morita 1994, Yedidia et al. 2000) or Kirkwood approximation (Singer 2004)

is as follows:

P̂ 1,1,1
BA (zi, zj , zk) =

P (1)(zi, zj)P
(1)(zj , zk)P

(1)(zi, zk)

P (zi)P (zj)P (zk)
(6)

This definition can be interpreted as the product of the probabilities for the

three distance 1 pairs of the triangle, divided by the overcounted singleton

probabilities (since a vertex is present in two pairs).

In the case of an open triplet, the Bethe approximation is the Pair approxi-

mation, and reads

P̂ 1,1,2
BA (zi, zj , zk) =

P (1)(zi, zj)P
(1)(zj , zk)

P (zj)

As Bethe, all classical closures at order 2 for models on graph are distance

1 closures at order 2: pairs of nodes separated by more than one edge are

assumed to be independent. (As we deal with graphs, reference to a distance

will always be reference to the geodesic distance). However, if middle range

correlations can be neglected far from the critical point, this same choice

leads to inaccurate approximations closer to the critical value βc. As a step

for improvement of classical order 2 closures, we present in the next section

a method to take into account the correlation between two nodes at distance
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larger than 1. The method will be implemented in the approximation of

the triplet probabilities P (1,1)(100) and P (1,1)(101), and to close the system

formed by (2) and (3).

4 Extension to longer range correlation

The method presented below can be applied to extend order 2 closures by

taking into account correlations for any given distance. However, as for the

choice of the order of the closure, there is a trade-off between complexity

and precision. We detail here a method for adding distance 2 and distance

3 correlations (illustrated only on the Bethe closure). For longer distances,

the method is still theoretically valid, but may not be tractable in practice.

4.1 Adding distance 2 correlations

A generalisation of the closure is proposed in order to take into account cor-

relations at distance 2. If i, j, k are three vertices of the graph with associated

distances dij , djk and dik, then the extended definition of the Bethe closure

is

P̂ (dij ,djk ,dik)(zi, zj, zk) =
P (dij)(zi, zj)P

(djk)(zj , zk)P
(dik)(zi, zk)

P (zi)P (zj)P (zk)
(7)

In the above expression, we approximate a pair probability, for instance

P (dik)(zi, zk), with P (zi)P (zk) if dik > 2 (instead of dik > 1 in the classi-

cal closures).

Let us start from equation (5). The approximation P̂ 1,1,1(zi, zj , zk) for a

closed triangle △ is not modified with the extended closure because it in-

volves only pairs at distance 1. Thus, we still use (6). For P̂ 1,1,2(zi, zj , zk),

i.e. for an open triplet ∧, even if there is no direct path (an edge) between
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sites i and k, many other paths of different lengths exist. One of them is

the path through the middle point j of the triplet, which is a path of length

2, the shortest length. Taking into account this information (which is only

part of the existing long-range correlations), the distance 2 Bethe closure of

P 1,1,2(zi, zj, zk) is

P̂ (1,1,2)(zi, zj, zk) =
P (1)(zi, zj)P

(1)(zj , zk)P
(2)(zi, zk)

P (zi)P (zj)P (zk)
(8)

The correction term, when comparing with the classical pair approximation,

is P (2)(zi,zk)
P (zi)P (zk)

, which arises from the fact that the variables zi and zk are not

independent.

4.2 New approximated dynamics equations

We can now exploit the distance 2 order 2 closure to approach the system

formed by equations (2) and (3). We recall that





dρ

dt
= hβP (1)(01) − ρ

dP (1)(01)

dt
= P (1)(11) + β(h − 1)P (1,1)(100)

− P (1)(01)

[
1 + β + β(h − 1)

P (1,1)(101)

P (1)(01)

]

The closure will be reached through an approximation P̂ (1,1)(100) (and P̂ (1,1)(101))

which involves not only P (1)(01) but also P (2)(01), since from (5), (6) and
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(8)

P̂ (1,1)(100) = θP̂ 1,1,1(100) + (1 − θ)P̂ 1,1,2(100)

= θ
P (1)(01)2P (1)(00)

ρ(1 − ρ)2
+ (1 − θ)

P (1)(01)P (2)(01)P (1)(00)

ρ(1 − ρ)2

=
P (1)(01)P (1)(00)

ρ(1 − ρ)2

(
θ P (1)(01) + (1 − θ) P (2)(01)

)
(9)

Then, an additional equation is required for the temporal evolution of P (2)(01)

Let us define t
(2)
ab→cd, the transition rate from states (a, b) to states (c, d) when

the shortest path between the two sites of interest is of length 2. Counting

the events starting from, and leading to, the state (01), we have:

dP (2)(01)

dt
= −P (2)(01)(t

(2)
01→11 + t

(2)
01→00)

+P (2)(00)t
(2)
00→01 + P (2)(11)t

(2)
11→01 (10)

with the transition rates at distance 2 approximated by

t̂
(2)
01→11 = β(h − 1)

P̂ (1,2)(101)

P (2)(01)
+ β

P̂ (1,1,2)(011)

P (2)(01)

t̂
(2)
01→00 = 1

t̂
(2)
00→01 = β(h − 1)

P̂ (1,2)(100)

P (2)(00)
+ β

P̂ (1,1,2)(010)

P (2)(00)
(11)

t̂
(2)
11→01 = 1

and

P̂ (1,2)(zi, zj , zk) = α1
P (1)(zi, zj)P

(2)(zj , zk)P
(1)(zi, zk)

P (zi)P (zj)P (zk)

+α2
P (1)(zi, zj)P

(2)(zj , zk)P
(2)(zi, zk)

P (zi)P (zj)P (zk)
(12)

+α3
P (1)(zi, zj)P

(2)(zj , zk)

P (zj)
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(see the appendix for details on derivation of the transition rates.)

In P̂ (1,2) only two distances are known. There are three possibilities for the

value of the third distance: equal 1, equal 2 or higher than 2. The coefficients

α1 to α3 represent the proportions of the three corresponding patterns of

triplets of sites respectively (see Figure 1 (a) and (b)). The extended closure

therefore enables us to point out new characteristics of the graph which can

affect the evolution of the process. We refer to these weights as the square

clustering coefficients. Their influence on the evolution of the process will be

easy to explore in the framework of distance 2 order 2 closures.

Finally, the system formed by (2) and (3) and (10), with approximations (9),

(11) and (12) is now closed since pairs probabilities for states 00 and 11 can

be recovered from ρ and pair probabilities for state 01.

4.3 Adding distance 3 correlations

The same method could be repeated in turn to refine the approximation of

the correlations when two sites are separated by more than 2 edges, more

than 3, ... and so on. We have implemented here one step further only,

dealing with pairs of vertices at distance 3 without approximations. This

modifies only the term with weight α3 in (12) because this corresponds to

the only situation where a distance higher than 2 exists between the three

sites involved. Applying the same logic as for distance 2 correlations, we

derive the extension by applying the following steps:

(1) we add a fourth equation in the system, for the temporal evolution of

P (3)(01).

(2) we express transition rates t
(3)
01→11 and t

(3)
00→01 in terms of probabilities of

the form P (1,3)(zi, zj , zk): the probability to find three sites (i, j, k) in con-

figuration (zi, zj , zk), given that (i, j) ∈ E , that the shortest path between j
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and k is of length 3 and that dik is unknown (i is not on the path between j

and k).

(3) we decompose P (1,3)(zi, zj , zk) depending on the third distance in the

triplet. There are three possibilities for the shortest path between i and k:

2 or 3 edges (see Figure 1 (c) and (d)) or 4 edges. Only one edge is not

possible since it would mean that there is a path of length 2 between j and k

while the distance between these two vertices is 3. We compute the weights

(γ2, γ3, γ4) of the three patterns of triplets for the studied graph.

(4) we apply formula (7) for dik = 2, 3 or 4. In the case of a distance 4, we

replace P (4)(zi, zk) by the product of the singleton probabilities.

Note that going one step further in the approximation enables us to in-

troduce three new graph parameters (γ2, γ3, γ4).

5 Comparison with closures from the litera-

ture

To study the potential gain associated with the proposed extension, com-

parison with different classical order 2 closures from literature will be imple-

mented.

The first closure presented here is Pair Approximation (PA). It is now stan-

dard to simplify complexity in spatio-temporal models in epidemiology and

ecology when space is discrete (see Dieckmann et al. 2000, chapters 13,18,19).

It reads as follows, for any set of three sites all linked by an edge:

P̂ 1,1,1
PA (zi, zj , zk) = P̂ 1,1,2

PA (zi, zj, zk) =
P (1)(zi, zj)P

(1)(zj, zk)

P (zj)
(13)
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Note that the approximation is the same whether the triplet is closed or

not. It does not account for the effect of the clustering coefficient of the

graph, and distance 2 or distance 3 correlation cannot be introduced. Several

improvement and variations around PA have been proposed (see Discussion).

We do not introduce them here, because, as it is the case for PA, they cannot

be extended to correlations at distances larger than 1.

As we have shown, the Bethe approximation (BA) enables such extension.

However, the Bethe approximation of triplet probabilities is not normalized.

So we will also consider here its normalized version (NBA):

P̂ 1,1,1
NBA(zi, zj, zk) =

P̂ 1,1,1
BA (zi, zj , zk)∑

zi,zj ,zk
P̂ 1,1,1

BA (zi, zj, zk)
(14)

Moment closure is also widely used in continuous space in population dynam-

ics. The PA and BA have also been applied in this context. Recently more

sophisticated order 2 closures have been proposed (Dieckmann et al. 2000,

chapter 21, Murrel et al. 2004). They are referred to as respectively Power

1 (Pw1) and Power 2 (Pw2) closure according to the number of pairs mul-

tiplied together in an elementary building block of the closure. The Power 1

closure is defined as

P̂ 1,1,1
Pw1 (zi, zj, zk) = P (zi)P

(1)(zj , zk) + P (zj)P
(1)(zi, zk) + P (zk)P

(1)(zi, zj)

− 2P (zi)P (zj)P (zk)

(15)

Here, the building block is one pair probability among the three in the trian-

gle, multiplied by the probability of the vertex opposite to the pair. For Pw2,

the building block is the product of two pairs probabilities divided by the

probability of the vertex common to the two pairs. This ensures, as for the

other closures presented above, that the closure has the correct dimension.
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Note that one of the building block is exactly PA,

P̂ 1,1,1
Pw2 (zi, zj, zk) =

1

2

[
P (1)(zi, zj)P

(1)(zj , zk)

P (zj)
+

P (1)(zi, zj)P
(1)(zi, zk)

P (zi)

+
P (1)(zi, zk)P

(1)(zj , zk)

P (zk)
− P (zi)P (zj)P (zk)

] (16)

Note also that a drawback of Pw1 and Pw2 is that they may lead to negative

values, with low values of β (and thus of ρ), because of the strong correlation

between vertices’ states.

For each of these four closures, we have derived the extended versions, tak-

ing into account distance 2 and distance 3 correlations, following the same

methodology as in Section 4.

6 Results

We compared the performance of each closure that we selected from liter-

ature (see section 3 and 5: Mean Field (MF ), Pair approximation (PA),

Bethe (BA), normalized Bethe (NBA), Power 1 (Pw1) and Power 2 (Pw2))

without and, when relevant, with the above extension to correlations at dis-

tance 2 (section 4.1) and 3 (section 4.3), regarding the transients and value

at equilibrium of ρ and estimation of the critical value βc. Closures were

compared with simulations of the contact process.

6.1 Method

We used the Runge Kuta method from package odesolve of R to solve the

ODE systems. Estimations of ρ at equilibrium from simulations of the con-

tinuous time contact process were obtained by averaging over 100 different
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realisations, each of them run during 40000 iterations. Simulations of tran-

sients were obtained by performing realisations of 40000 iterations. One

iteration is defined as the modification of the state of a single node in the

graph (according to rates derived from equation (1)). The time scale between

two iterations is incremented by the corresponding exponential random vari-

able. The size of the graphs are about 1000 vertices.

Two different graphs with homogeneous degree are considered, with re-

spectively h = 6, h = 4 edges by vertex (see Figure 2). The first one is often

referred to as the triangular grid. These examples of homogeneous graphs

have the same clustering coefficient, but different coefficients regarding dis-

tance 2 and distance 3 correlations. All the graph’s statistics necessary to

implement the closures approximations are easily obtain by combinatorial

computation. Their values are reported in Table 1. We ran simulations on

the triangular grid and the degree 4 graph with respectively 900 and 980

vertices. As the results are qualitatively similar, we illustrate them here only

on the graph of degree 4.

6.2 Comparisons between different forms of closures

Estimation of the critical value βc of the parameter β and of the density ρ

(prevalence) at equilibrium close to this value is more challenging than es-

timation of densities far from the critical value. Therefore, the numerical

simulations and comparisons with the simplified systems have been imple-

mented close to the critical value of β, known from simulations.
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h θ α1 α2 α2 γ2 γ3 γ4

6 2/5 2/15 6/15 7/15 2/15 6/15 7/15

4 2/5 4/45 4/15 29/45 2/45 12/45 31/45

Table 1: Statistics of the two homogeneous graphs studied: h is the degree

of the graph, θ is the clustering coefficient, α1 to α3 are the square clustering

coefficients for closures with correlations at range higher than 1, γ2 to γ4 are

coefficients for closures with correlations at range higher than 2.

Estimation of βc

Table 2 gives the estimates of βc from simulation and for each closure, on

the graph of degree 4. Note that an analytical expression of βc is available

for MF and for PA, which is equal respectively to 1/h and 1/(h + 1). The

results for the graph of degree 6 are similar (i.e. similar ordering of the qual-

ity of the approximations) and, as the degree is higher, the approximations

behave slightly better. This shows that (i) estimations without the extension

to correlation at distance 2 or larger are poor whatever the method, with the

exception of Pw1, with the ordering MF < Pw2 < PA < BA ≤ NBA,

where M1 < M2 means that method M1 is less accurate than method M2

(ii) the estimation with method Pw1 without extension is accurate (iii) tak-

ing into account the correlations at distance 2 or 3 improves the estimation

by NBA, whereas there is an improvement with distance 2 for BA, and

a breakdown for distance 3 (iv) these extensions destabilise the numerical

scheme for Pw1, probably because negative values for the probabilities are

produced. Figure 3 illustrates points (ii) and (iii) around the value of βc es-
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timated from simulations. In the following, NBA with extension to distance

3 correlations, as well as Pw1 closure without extension, are kept for testing

the estimation of ρ during transients.

Simulation 0.45

Closure Classical Distance 2 Distance 3

Mean Field 0.25

Pair approximation 0.33

Bethe approximation 0.37 0.40 0.36

Normalized BA 0.37 0.41 0.42

Power 1 0.44 problem problem

Power 2 0.30 0.32 0.33

Table 2: Estimated values of the critical value βc from simulation and by solv-

ing the ODE systems corresponding to different closures without (Classical)

and with extension to distance 2 and 3 correlations.

Estimation of ρ during transients and at equilibrium

Figure 4 shows simulated and approximated trajectories trajectories, for the

closures that we selected because they yield the best fit for βc. Every closure,

without and with extension when relevant, has been implemented (figure not

shown), and none is better than NBA with the extension or Pw1. Three

behaviours can be distinguished:

(i) for β < βc (Figure 4, a), the transients towards extinction are well

estimated by NBA with extension or by Pw1, and with less accuracy

by other methods
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(ii) for β ≃ βc, with β > βc (figure 4, b), all methods overestimate the

prevalence both at equilibrium (ρeq) and during the transients; however,

this overestimation is slighter for NBA with the extensions or for Pw1

(iii) for β ≫ βc (figure 4, c), all methods estimate correctly the prevalence

at equilibrium, and more poorly the transients.

Empirical correction

The numerical results show that when β > βc (ρeq > 0) the discrepancy

between simulations and approximations increases when β − βc decreases.

The discrepancy is always an overestimation of ρeq. Therefore, a smallest

but artificial value β̃ of β could yield the correct prevalence at equilibrium.

A priori, this value is unknown. As the value of ρeq is an increasing function

of β in simulations and in the approximated system, as soon as β > βc, there

exists a value β̃ = f(β) such that the approximated system with β̃ yields

the same value for ρeq as the one obtained by simulation. The question is:

what does the function f look like? By numerical simulations, we observed a

linear relationship for f (see Figure 5). A linear fitting β̃ = a β + b + ǫ yields

R2 = 0.989 with a p−value p = 4.905× 10−5, with 13 degrees of freedom. It

is worth noting that this linear fitting does not depend on the graph, as it

works equally well, with the same coefficients, for the degree 4 graph as for

the degree 6 graph. Even if we have not tested it thoroughly, we conjecture

that the linear relationship between β and β̃ is universal, in the sense that it

does not depend on the fine geometry of the graph. This allows a very good

empirical prediction of the prevalence at equilibrium through the following

process: (i) compute β̃ as a linear function of β (ii) solve numerically the

equilibrium for NBA with β̃. This procedure is an extension of the modified
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mean field model, as proposed in Pascual et al. (2001), where an exponent q

in the mean field equation is modified such that the system with the modified

exponent yields a correct estimation of the density at equilibrium, for Wator

model. In our estimation, the modified parameter β̃ is a linear function of

the correct one, whereas in Pascual et al. (2001), the modified parameter

depends on the dimension of the embedding space only. This relationship

leads to a good fit at equilibrium while progress remains to be made for

transients. Nevertheless, this provides an ad-hoc tool to improve the closures

at intermediate and high values of β.

6.3 Influence of the network structure

The extended closures we proposed can now be exploited to characterize the

influence of features of the graph they depend on. These features can be

good candidates for being simple characteristic of the graph which control

the value of the critical point and the prevalence in the vicinity of it, both

at equilibrium and during the transients.

We tested the influence of the clustering coefficient θ and of the square

clustering coefficients (α1, α2, α3) on ρeq, using the NBA approximation with

distance 3 correlations. This closure and the classical Pw1 provide the best

approximation but the latter does not enable us to take into account the

square coefficients. To test the influence of a given element of the geometry

we computed the solution of the closed ODE system for a range of values of

the corresponding parameters (either θ, or (α1, α2, α3) ), the other parame-

ters being unchanged.

Figure 6 shows the influence of the clustering coefficient θ for different
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values of β. The role of θ is highly dependent on the value of the transmission

rate β: for high values (corresponding to a high density of infected nodes at

equilibrium) there is almost no effect. This is consistent with the relevance

of mean field approximation, which ignores the geometry of the graph, for

large β. The effect of θ increases as β decreases towards its critical value. We

recover the fact that a high clustering coefficient impedes disease propagation

(see Keeling (1999) in the case of a spatially explicit SIR model, or Proulx

et al. (2005)). Indeed, infected individuals in a common highly clustered

area of the interaction network share many nearest neighbours. These links

are wasted because some of the paths for disease spread becomes redundant.

Figure 7 shows that the repartition of the weights between the αi’s can

significantly modify the density ρeq when the transmission rate is low: when

α1 is dominant, the prevalence is lower whereas when α3 is dominant, the

prevalence is higher. The interpretation is the same as for θ: when α1 is

dominant, there is a redundancy of paths of length 2 between pairs of vertices,

and infected individuals have more overlapping contacts, which are wasted.

Here again, the effect of these graph features decreases when β increases and

can be ignored for high value of this parameter.

7 Discussion

Stochastic models on graphs are powerful tools to represent the role of space

and connection networks in infectious diseases emergence and spread. Sim-

ulations may require intensive computations in order to understand the role

of parameters, and in general no analytical result is known. Standard treat-

ment is to derive approximations of exact results, namely order 2 moment

closure approximations. Here we proposed a method to improve the classical
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closures in order to explore easily the importance of the graph features.

The method relies on the introduction of longer range correlations in the

classical expression of the closures. In closure for models of population dy-

namics in continuous space, this information has more naturally been taken

into account (Bolker and Pacala 1997, Murrel et al. 2004) since the models

are defined through diffusion kernels rather than nearest-neighbours interac-

tion. However, to our knowledge, the importance of long range correlations

in the closures quality has been little studied in discrete space. In Snyder

and Nisbet (2000), the authors have introduced an empirically-based approx-

imation of the spatial correlations as a function of the recovery rate of the

contact process at the critical point. In this article we propose a alternative

method with easier interpretation and avoiding simulations for approaching

the critical point, which is technically simple and remains computationally

reasonable.

Regarding the closures (extended or not) leading to the best fit with sim-

ulations, a first result is the characterization of three behaviours depending

on the value of the transmission rate β: (i) for β < βc (the critical value),

the transients towards extinction are well estimated, (ii), for β ≃ βc, with

β > βc all methods overestimate the prevalence both at equilibrium and

during the transients, (iii) for β ≫ βc all methods estimate correctly the

prevalence at equilibrium, and more poorly the transients. Such a variability

in the closure performance according to the region of the parameter space

(sub-critical, critical and metastable region) has already been pointed out

(e.g. Krishnarajah et al. 2005). Some questions remain open for IPS mod-

els: which are the model features which remain poorly captured by the order
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2 closures above the critical point? Which are the graph features which

can enhance the importance of these quantities? It seems that the methods

overestimate the effective number of possible contacts between infected and

susceptible individuals. Indeed, in the first stages of an epidemic, infected

individuals are clustered in a small area of the interaction network and a

large part of the population can not be reached by direct contact with these

infected. Such concerns have already being considered. In the framework

of a lattice-based epidemic model, Sato et al. (1994) have proposed an Im-

proved Pair Approximation using a discounted term for the overestimated

probability. In Filipe and Gibson (2001), the overestimation of the density

of infected is compensated through a mixture with an approximation which

underestimates the same quantity. A more meaningful solution would be to

relate this behaviour to some parameters of the interaction network (like the

diameter, linked to the notion of short cut) and to introduce them into the

closures.

Another contribution of this work is the analysis of the effect of the choice

of the closure on the quality of the results. We compared different forms of

closure from the literature, two of them (Power 1 and Power 2) introduced

from continuous space, and extended here to discrete space. Several other

variations from the original pair approximation have been developed. We

could not consider all of them since either, as for the pair approximation,

their form does not enable us to introduce longer range correlation (Sato

et al. 1994, Filipe and Gibson 2001, Bauch 2005), or they are similar to

the ones studied (e.g. Van Baalen 2000) has proposed a form close to the

Bethe approximation, taking into account the clustering coefficient). For all

the closures we have considered, we derived the corresponding versions with
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longer range correlation and we compared the performance with, and with-

out, this extension. Our conclusions are (i) in most of the cases, introducing

longer range correlations improves the quality of the approximation, (ii) the

two closures leading to the best fit for prevalence, at equilibrium or during

transients are Power 1 without extension and normalised Bethe approxima-

tion with distance 3 correlations. Even if these two closures do not always

identify accurately the phase transition, they provide reasonable estimators

of the critical value. Since our objective is the exploration of the influence

of the graph charasteristics rather than a precise estimation, the normalised

Bethe approximation with distance 3 correlations appears as a good candi-

date for this goal.

Through the methodology for extended closures presented in this work,

we propose some characteristics of the graph as relevant features for a simpli-

fication of the process dynamics and a study of spatial determinants of disease

spread. Among these features is the well known clustering coefficient. We

identify as well new coefficients, the square clustering coefficients, which en-

rich the characterisation of spatial organisation in a network. In Caldarelli

et al. (2004), the authors have pointed our that the clustering coefficient may

be not sufficient and have considered as well a description of ordering in a

networks via more complex patterns of nodes. Here we link such descriptions

with the dynamics of a process spreading on the graph. Exploration of the

state space of clustering and square clustering coefficients is easy through

the extended normalised Bethe approximation, and yields (i) the influence

of these elements of the graph geometry is strong for low to median values of

the transmission rate, (ii) the clustering and square clustering coefficients are

both indicators of the redundancy of paths in a graph. For graphs with ho-
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mogeneous degree, computations of these parameters are easy. Furthermore,

when considering a real and more complex interaction network, algorithms

are available to evaluate them (see Schreiber and Schwöbbermeyer 2005 and

references therein). In Petermann and De Los Rios (2004b), the authors

proposed a different approach to integrate elements of the graph topology

in an approximation of the spatial SIS model, based on the analysis of two

consecutive steps of the process. Comparing the answer of the two approxi-

mations in term of quantification of the graph’s role in a disease spread could

be worth being done.

Finally, we presented the method in the case of graphs with constant de-

gree, but we are aware that graphs with non-constant degree are far more re-

alistic: interaction networks, except in some particular cases like in orchards,

are highly complex (e.g. social contact networks, airline routes networks,

see Newman 2003). This is also true for ecological networks (Proulx et al.

2005). The methodology presented here can be extended without conceptual

problem to this situation and should enable us to take into account parame-

ters specific to non-homogeneous graphs (mean degree, degree distribution).

The limit will only be the available computational time and this cost re-

mains to be evaluated. Pair approximation and Bethe approximations have

already been derived for a graph with a general degree distribution (Peyrard

and Franc 2005). Combining the influence of degree distribution and long-

range correlations should provide quite realistic closures of the real epidemic

dynamics close to the critical value.
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Appendix

Derivation of the exact expression for evolution of P (1)(01)

Pairs of nodes at distance 1 in state 01 can result from the infection of one

node in a pair 00 or from the evolution toward susceptible of a node in a pair

11. Pairs 01 can also disappear, either by infection of the susceptible node,

or by recovery of the infected one. If t
(1)
ab→cd is the transition rate of a pair of

nodes at distance 1 from state ab to state cd, then

dP (1)(01)

dt
= P (1)(00) t

(1)
00→01 + P (1)(11) t

(1)
11→01 − P (1)(01) t

(1)
01→11 − P (1)(01) t

(1)
01→00

Transition rates t
(1)
11→01 and t

(1)
01→00 are equal to 1. Transition rates t

(1)
00→01 and

t
(1)
01→11 depend on the state of the neighbourhood of the node moving from

state 0 to state 1.

Let us consider t
(1)
01→11. First we need to introduce some notations. We will

call respectively i and j the node moving from 0 to 1 and the node staying

in state 1. If N(i) represents the set of the h nodes in V linked with i by

an edge, and zt
A denotes the state of the nodes in a subset A of V at time

t, then the number of neighbours of node i which are infected at time t are

ai(z
t
N(i)) =

∑
l∈N(i) δ1(z

t
l ) (with δ1(0) = 0 and δ1(1) = 1). Since the state of

node j is known we can rewrite this expression as 1 +
∑

l∈N(i)\{j} δ1(z
t
l ). So,
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using properties of the mathematical expectation E,

t
(1)
01→11 = E[β ai(z

t
N(i)) | zt

i = 0, zt
j = 1]

= β


1 +

∑

l∈N(i)\{j}

E[δ1(z
t
l ) | zt

i = 0, zt
j = 1]




= β


1 +

∑

l∈N(i)\{j}

P (zt
l = 1 | zt

i = 0, zt
j = 1]




= β

(
1 + (h − 1)

P (1,1)(101)

P (1)(01)

)

The same logic leads to

t
(1)
00→01 = β(h − 1)

P (1,1)(100)

P (1)(00)

Finally,

dP (1)(01)

dt
= P (1)(11) + β(h − 1)P (1,1)(100)

−P (1)(01)

[
1 + β + β(h − 1)

P (1,1)(101)

P (1)(01)

]

Derivation of the distance 2 pair transition rates

Let us consider the transition rate t
(2)
01→11, and let say that the site moving

from 0 to 1 is site j and the other is site k. To compute this rate, we have to

compute the probability of each neighbour of j to be infected. One of these

neighbours is exactly the site in between j and k (since we know that the

shortest path between j and k is of length 2). The term
bP (1,1,2)(011)

P (2)(01)
corre-

sponds to this particular neighbour. The term (h − 1)P (1,2)(101)

P (2)(01)
corresponds

to the h − 1 other neighbours of j, so that

t̂
(2)
01→11 = β(h − 1)

P̂ (1,2)(101)

P (2)(01)
+ β

P̂ (1,1,2)(011)

P (2)(01)
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As for the temporal evolution of P (1)(01), these transitions involve triplet

probabilities. In the same way that we have decomposed P̂ (1,1)(zi, zj , zk)

using the clustering coefficient θ, P̂ (1,2)(zi, zj , zk) is decomposed according to

the distance between node i and node k. More precisely, P (1,2)(zi, zj, zk) is

the probability to find three sites (i, j, k) in configuration (zi, zj, zk), given

that (i, j) ∈ E , given that the shortest path between j and k is of length 2

and given that i is not the middle site between j and k. Either i and k are

linked by an edge (Figure 1 (a)), or the two extreme vertices are at distance

2 (Figure 1 (b)), or they are at distance 3. Let us denote α1, α2, α3 the

respective proportions of these three organizations. We can now decompose

P̂ (1,2)(zi, zj, zk) = α1P̂
(1,2,1)(zi, zj, zk)+α2P̂

(1,2,2)(zi, zj , zk)+α3P̂
(1,2,3)(zi, zj, zk)

We apply the distance 2 Bethe closure to define each term. In the two first

terms P̂ (1,2,1)(zi, zj, zk) and P̂ (1,2,2)(zi, zj, zk) only P (1) and P (2) are involved.

In the case of P̂ (1,2,3)(zi, zj, zk), we assume that the states of the pair of sites

at distance 3 are independent. So for the distance 2 Bethe approximation we

have:

P̂ (1,2)(zi, zj, zk) = α1
P (1)(zi, zj)P

(2)(zj , zk)P
(1)(zi, zk)

P (zi)P (zj)P (zk)

+α2
P (1)(zi, zj)P

(2)(zj, zk)P
(2)(zi, zk)

P (zi)P (zj)P (zk)
+ α3

P (1)(zi, zj)P
(2)(zj , zk)

P (zj)
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Figure 1: Illustration, on the triangle grid, of patterns of triplets of nodes

i, j, k corresponding to weight (a) α1, (b) α2, (c) γ2, (d) γ3. Big vertices are

the three nodes of the triplet.
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Figure 2: Examples of graphs with constant degree: left, triangular grid with

h = 6, right, h = 4.
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Figure 3: Estimations of the prevalence at equilibrium close to βc by NBA,

Pw1 and simulations, for the homogeneous graph with h = 4. Full line and

dotted lines: mean and 90 % confidence interval from simulations, full line

with symbols 1 to 3: NBA respectively without and with distance 2 and

distance 3 correlations, dash-dotted line: Pw1 without extension to longer

range correlations.
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Figure 4: Estimations of the prevalence temporal evolution for the homoge-

neous graph with h = 4. x-axis: time, y-axis: prevalence, full lines: sim-

ulations of the contact process, dashed line: NBA with distance 3 correla-

tions, dashed-dotted line: Pw1 without extension to longer range correla-
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Figure 5: Linear relationship between the real value of β (x-axis) and the

value leading to the same equilibrium with NBA extended to distance 3

correlations (y-axis) for the homogeneous graph with h = 4.
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Figure 6: Influence of the value of the clustering coefficient θ on the preva-

lence at equilibrium for the homogeneous graph with h = 4. x-axis: β ranging

from 0.33 to 0.69, y-axis: θ ranging from 0 to 1, z-axis: ρeq ranging from 0

to 0.58 (arrows indicate increasing values).
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Figure 7: Influence of the square clustering coefficients (α2, α2, α3) on the

prevalence at equilibrium for the homogeneous graph with h = 4. x-axis: α1

ranging from 0 to 1, y-axis: α2 ranging from 0 to 1 , z-axis: ρeq ranging from

0.01 to 0.26 (arrows indicate increasing values). The y-axis can equivalently

be interpreted as α3 ranging from 0 to 1.
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