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Abstract: A model classically used for modelling the spread of an infectious diseases in
a network is the time continuous contact process, which is one simple example of interacting
particles system. It displays a non-equilibrium phase transition, related to the burst of an
epidemics within a population in case of an accidental introduction. Several studies have
recently emphasized the role of some geometrical properties of the graph on which the contact
process lives, like the degree distribution, for quantities of interest like the singlet density
at equilibrium or the critical value of the infectivity parameter for the emergence of the
epidemics, but this role is not yet fully understood. As the contact process on a graph still
cannot be solved analytically (even in a 1D lattice), some approximations are needed. The
more naive, but well studied approximation is the mean field approximation. We explore in
this paper the potentiality of a finer approximation: the pair approximation used in ecology.
We give an analytical formulation on a graph of the site occupancy probability at equilibrium,
depending on the site degree, under pair approximation and another dependence structure
approximation. We point out improvements brought in the case of realistic graph structures,
far from the well-mixed assumption. We also identify the limits of the pair approximation to
answer the question of the effects of the graph characteristics. We show how to improve the
method using a more appropriate order cluster variation method, the Bethe approximation.

PACS code : 02.50.Ey; 11.80.Fv
Keywords: graph, contact process, phase transition, pair approximation, Bethe approx-

imation.

1 Introduction

The contact process is a well studied toy model exhibiting a nonequilibrium phase transition
( [1] or [2, chapter 6]). It has been defined on a lattice, where the cell state can be either 0
(empty) or 1 (alive). The time is continuous. A living cell becomes empty with rate dt. An
empty cell becomes alive with rate βadt where a is the number of living neighbor cells. The
transition is between an absorbing state, for β < βc where all cells are in the empty state,
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and an excited state, for β ≥ βc where the process is living forever on the lattice (rigorously,
if the lattice size is infinite).

It has been designed for, and widely used, to study the spread of diseases within a pop-
ulation. The cells represent hosts, and the states are ’healthy’ (0) or ’infected (1). The
phase transition corresponds to the persistence of the disease, once an infected host has
been introduced within the population. It has been used as well for modelling phenom-
ena involving excitable media, like fire models [3], where the states are ’unburned’ (0) and
’burning’ (1), and the transition concerns the persistence of the fire. Following the works
on networks of SIS models, (see [4]) a contact process living on a graph has been studied
(as opposed to a regular grid), where the nodes model the hosts and the edges the paths for
infectivity ([5]). Different types of diseases lead to different types of graphs. For example,
some infectious disease in humans propagate through social networks, known to be scale free
graphs [6]. Diseases in plants propagated by fungi lead to neighborhoods defined by dis-
tances ([7, 8]). A graph-based modeling approach has also been shown relevant to represent
individuals movements within a network of cities in order to extend classical non-spatial SIR
models for disease dynamics within each city ([9]).

One challenge is to understand how the structure of a graph can influence its function (here,
propagation of a disease living on it). The structure of a graph can be described by the
degree distribution (a random graph has a poisson degree distribution, whereas a scale-free
graph exhibits a power law degree distribution, see [4]). More sophisticated indices are the
clustering coefficient, correlation between degrees, etc. ... [4]. The difficulty is due to the
model complexity: no analytical expression of the site occupancy probability is available and
approximation are needed. One solution would be to explore the graph influence through
simulations. We adopt here approximations from statistical mecanics, with the advantage
of a generic analytical solution. A first step is to implement classical and tractable approx-
imations, such as mean field approximation ([10]). When applied to the contact process,
it leads to the family of SIR models often used in epidemiology. Although the mean field
approximation assumes that the individuals are well mixed and behave like indepedent – the
structure of the graph is not taken into account – it is possible to derive a mean field approx-
imation taking into account the degree distribution [11, 12, 4, 5]. However, it is known to
behave badly close to the phase transition. One challenge is to find a reliable approximation
close to the phase transition, taking into account the structure of the graph. Therefore,
we present here some cluster variation approximations for the contact process on a graph,
which allows to take into account pair correlation (they are order 2 moment closure solu-
tions). The cluster variation method has been developped in the 1930’s in solid state physics,
and has been successfully implemented on toy models like Ising or Pott model (see [13]). The
approximations we consider here are the pair approximation and the Bethe approximation,
whose generalization is the Kikuchi approximation in statistical physics (see [14, 15, 16, 17]).

To our knowledge, neither pair approximation nor the Bethe approximation have been devel-
oped for a contact process on a graph. Recently, [18] (see references therein) have developped
a pair approximation for a spatialized SIRS model on an hypercubic lattice. Here, we de-
velop for the CP on a graph (i) nested exact equations for the dynamics of singlets and
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pairs (ii) a closure with pair approximation, which does not take into account the triangles
(iii) finally a Bethe approximation, as a cluster variation method which introduces a cor-
recting term in the PA, taking the existence of triangles into account. We identify then,
through simulations, the types of graphs which can favor the mean field approximation and
the ones where this method reaches its limits and can be improved by order 2 approximations.

The paper is organized as follows. The next section is dedicated to the description of the time
continuous contact process model on a graph and to the exact (but not closed) expressions
for transients of singlets and pairs. Then, in Section 3, we propose one way to implement
pair approximation. The resulting analytic solution at equilibrium is established in Section
4 and compared to simulation results and mean field results on graphs with different distri-
bution of the number of neighbors. The Bethe approximation with a correction term taking
the density of triangles into account is presented in section 5. A conclusion ends the paper.

2 The model

2.1 Contact process on a graph

A graph G = (V, E) is defined by a set V of vertices and a set E of edges. We will denote
s ∼ r the event (s, r) ∈ E . A vertex s is of degree k if s belongs to the subset Gk of vertices
linked to exactly k other vertices by edges. We note ds ∈ N the degree of vertex s. The
degree distribution of a graph is given by the probability distribution (pk)k where pk is the
probability for a vertex to be of degree k.
Each vertex s is in a state zs ∈ {0, 1} which varies with time, according to the dynamics of a
time continuous contact process. The rules are as follow ([1] or [2, chapter 6 ]): if s is occupied
(state 1) it becomes empty (state 0) with rate µ and we can always set µ = 1. Concerning the
contamination probability, if s is empty and has as occupied neighbors, it becomes occupied
with rate βas, with β being the per site contamination rate. This parameter can also be
expressed as β = λ/d̄, with d̄ the mean of the degree distribution. In order to specify the
asymptotic behavior, it is standard to study the evolution of some quantity of interest, like:
ρk = P (zs = 1|ds = k) and ξkl = P (zs = 0, zr = 1|s ∼ r, ds = k, dr = l) The other densities
for pairs are derived directly from these two.

2.2 Exact expression of the transients for singlets

The evolution of singlets is given by

dρk

dt
= (1 − ρk)P

0→1
k − ρk (1)

where P 0→1
k dt is the probability that a site of degree k and in state 0 moves to state 1 during

the period dt. By definition

P 0→1
k dt = P (zt+dt

s = 1|zt
s = 0, ds = k)

=
∑

z

P (zt+dt
s = 1|zt

s = 0, ds = k, z) × P (z|zt
s = 0, ds = k)
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where z is a configuration of the neighborhood of site s. Thus

P 0→1
k =

∑

z

βa(z)P (z|zt
s = 0, ds = k) (2)

where a(z) is the number of occupied vertices in configuration z of the neighborhood. Let
us define Zk as {0, 1}k. This is the set of all the possible configurations for z and we can
consider the probability law Q on Zk defined as

Q(z) = P (z|zt
s = 0, ds = k) (3)

Equation (2) can then be read as follows:

P 0→1
k = EQ[βa(z)] (4)

We use now the fact that a(z) can we expressed as a sum of indicatrix variables

a(z) =

k
∑

i=1

1{zs(i)=1} (5)

where s(1), . . . , s(k) are the k vertices corresponding to the k neighbors of s (i.e. z =
{zs(i), i = 1, . . . k}). Then

EQ[a(z)] =
k

∑

i=1

EQ

[

1{zs(i)=1}

]

=
k

∑

i=1

P (zs(i) = 1|zs = 0, ds = k) (6)

(We have dropped the reference to time in the notation since now all considered variables
are at the same date). This yields

P 0→1
k = β

k
∑

i=1

P (zs(i) = 1, zs = 0|ds = k)

P (zs = 0|ds = k)

The probability P (zs(i) = 1, zs = 0|ds = k) can be seen as a marginal probability, or a mean
quantity:

P (zs(i) = 1, zs = 0|ds = k) =
∑

l

P (zs(i) = 1, zs = 0|ds = k, ds(i) = l)p(ds(i) = l|ds = k)

=
∑

l

ξklP (ds(i) = l|ds = k)

We will denote ξk. this expression. Then,

P 0→1
k = β

kξk.

1 − ρk

(7)
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Hence

dρk

dt
= (1 − ρk)P

0→1
k − ρk

= kβξk. − ρk (8)

We have obtained an exact evolution equation for ρk involving the term ξk. related to the
pairs dynamics. ξk. is unknown and depends itself on triplets dynamics. Hence, equation
(8) is not closed, and is the first equation from a hierarchy involving probabilities of higher
orders. However, we can already deduce from (8) a property at equilibrium:

ρk = kβξk. (9)

2.3 Exact expression of the transients for pairs

In the process to close (9) we consider now the evolution of pairs in the system.
When considering a pair evolution, four states are possible: (00), (01), (10) and (11). The
probability to observe these states depends on the degree of the two sites of the pair. Let us
study the evolution of pairs (00) among the pairs in Gkl. During a period dt, pairs (00) can
be created from pairs (01) or (10), and pairs (00) can disappear through creation of pairs of
type (01) or (10). This can be expressed as

d(1 − ρk − ξkl)

dt
= ξkl + ξlk − (1 − ρk − ξkl)(P

00→10
kl + P 00→10

lk ) (10)

and at equilibrium,

0 = ξkl + ξlk − (1 − ρk − ξkl)(P
00→10
kl + P 00→10

lk ) (11)

with P 00→10
kl dt being the probability that a pair (00) in Gkl changes into state (10) during a

period dt. First, we establish an exact equation for P 00→10
kl :

P 00→10
kl dt =

∑

z̃

P (zt+dt
s = 1|zt

s = 0, ds = k, zt
r = 0, dr = l, z̃)

× P (z̃|zt
s = 0, ds = k, zt

r = 0, dr = l)

(12)

where z̃ is the state, at time t, of the neighborhood of the site s except the known site r
(note that this restricted neighborhood can be empty). By definition

P (zt+dt
s = 1|zt

s = 0, ds = k, zt
r = 0, dr = l, z̃) = βa(z̃)dt (13)

where a(z̃) is the number of occupied sites in z̃ (we remind that the last neighbor, r, is
empty). Thus

P 00→10
kl =

∑

z̃

βa(z̃)P (z̃|zt
s = 0, ds = k, zt

r = 0, dr = l) (14)

(15)
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and in the same way that for singlets, this yields

P 00→10
kl = β

k−1
∑

i=1

P (zs(i) = 1|zs = 0, zr = 0, ds = k, dr = l)

= β

k−1
∑

i=1

P (zs(i) = 1, zs = 0, zr = 0|ds = k, dr = l)

P (zs = 0, zr = 0|ds = k, dr = l)
(16)

At this stage, the expression of P 00→10
kl is an exact expression but is intractable. It involves

probabilities on triplets. Approximation on the interactions are necessary in order to break
this hierarchy, as presented in the following section.

3 Structure approximation

The system at equilibrium is described by the system of exact equations (9), (11) and (16).
The unknown quantities in these equations are ρk, ξkl and ξk.. The system must be closed
by choosing a way to approximate the triplets probability only in terms of the ρk, ξkl and
ξk.. The simpler approximation is the mean field approximation of a contact process on a
graph, which assumes that the sites are independent (see [11, 12, 5]). We present here the
approach we have adopted, based on a simplification on the dependence structure induced
by the degrees, and on a pair approximation, to take into account pair correlation between
states. Such a technique has been implemented several times on regular lattices where k
is constant over vertices and is the coordination number z (see [19, chapters 13 & 18]) or
on graphs with constant degree (see [19, chapter 19]). Here, we extend it to more general
graphs.

3.1 Degrees dependence structure

The main difference between a regular lattice and a graph is the introduction of an extra
random variable: the degree of each site. This induces a new dependence structure, among
the degrees, in addition of the dependence structure among the states. The consequence is
that in general the degrees and the states are not independent. Let us consider for instance
the evaluation of P (zA, zB|dA, dC) for disjoint subsets A, B and C of V. Since the variables
corresponding to the degrees of the sites are not independent and since the probability of the
state of a site is not independent of its degree, the probability distribution actually depends
on dC and this conditional probability is not easily accessible. To circumvent the problem of
degree dependence, we will assume (H) that for all disjoint subsets A, B and C of V,

H : P (zA, zB|dA, dC) = P (zA, zB|dA)

In addition, the contact process is characterized by spatial dependencies between the states
of the different sites of the graph and the computation of joint laws is of high complexity.
In the next section we will address this second problem using the pair approximation.
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3.2 Pair approximation on the states

The pair approximation is a method often used in ecology to simplify systems complexity
(see [19, chapters 13,18,19]). The approximation is as follows, for any set of three sites a, b, c,
with a linked to b and b to c:

p(za|zb, zc) ≈ p(za|zb) (17)

Note that the approximation will be the same if c is linked to a or not. This implies the
following approximation of the joint triplet distribution:

p(za, zb, zc) ≈
p(za, zb)p(zb, zc)

p(zb)
(18)

Let us apply this principle to expression (16). We obtain, under (H):

P 00→10
kl = β

(k − 1)ξk.

1 − ρk

(19)

It can be seen that P 00→01
kl actually does not depend on l (as a consequence of H). One

can note the similarity between this expression and the (exact) expression of the probability
that a site of degree k moves from 0 to 1 during the period dt (see equation 7). The
probability that a site s with k neighbors, and one of them at least in state 0, becomes
occupied is approximated here by the probability that a site s with k−1 “effective” neighbors
becomes occupied. This is quite natural, since the empty neighbor plays no role in a potential
contamination of s.

4 Results

At this stage, under pair approximation, in the system of equations defining the equilibrium
((9), (11) and (19)), all the quantities have been expressed only in terms of singlet or pair
densities. The quantities of interest are the ρks and the ξkls but the system still depends
on the quantities ξk.s. We have established that under our approximation, ξkl = ξk. at
equilibrium and is equal to (see the Appendix for computational details)

ξk. = β(1 − ρk − ξk.)
ξk.(k − 1)

1 − ρk

(20)

Consequently the system is closed and we can then derive the solution at equilibrium.

4.1 Solution at equilibrium

The equilibrium is solution of the system of equations (9) and (20). If (notation) αk =
kβ − k

k−1
, this yields the solution for the singlet densities for k > 1 (the analytical solution

ρ1 = 0 is not considered here as it will be shown that the approximation involved in the
calculation is relevant for large k only):

ρk = 1 −
1

1 + αk

, ∀k > 1 (21)
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The solution at equilibrium for the pair densities is:

ξk. =
1

kβ

(

1 −
1

1 + αk

)

, ∀k > 1 (22)

We can see, and this is coherent with intuition, that ρk is an increasing function of k and of β.
In addition, ρk tends to 1 when one of these quantities tends to infinity. The right-hand side
of equation (21) is positive if and only if β > 1

k−1
. We can also note that pair approximation,

as mean field (see [5]), predicts that only the mean degree (through β = λ/d̄) affects the
value of ρk. This is probably not the only graph characteristic which can affect the process
equilibrium.
If the graph is a lattice with coordination number (constant degree) z, the solution (21)
becomes

ρz = 1 −
z − 1

λ(z − 1) − 1
(23)

In the case of the n-dimensional cubic lattice Z
n (z = 2n), we recover the critical value for

λ under pair approximation: λc = 2n
2n−1

(see [2], pp. 180).

4.2 Simulation results

We present here comparisons between the formula derived from pair approximation and
simulations of a time continuous contact process. We compare also with the mean field
prediction (see [11, 12, 5]), in order to understand in which situations pair approximation
should be preferred. We have considered two sorts of graphs for simulations. A random (or
Poisson) graph has a degree distribution which can be approximated by a Poisson distribu-
tion. The second family of graphs considered is graphs with power law degree distribution.
This second example is known to be closer to networks in real world ([4]).
For both types of graphs we observe a better estimation of ρk for high degrees, or more
precisely for degrees far from the critical value (see Figure 1). This critical value is given by
β = 1

k−1
, or k = d̄

λ
+1. We have also observed, from simulations for different values of λ that

the difference between simulated an pair approximation values increases when λ decreases
and becomes closer to the critical value. One of the reasons for the difficulty to capture the
system behavior close to critical values with our pair approximation is in particular that, for
small λ, simulations are far from assumption (H) (results not shown here). Working without
this assumption is probably one of the paths to explore to improve our pair approximation.
We have also compared the pair and the mean field approximation results on a random
graph and a power law graph. We observe that the mean field assumption leads to satisfy-
ing approximation of the proportions of occupied sites at equilibrium for a random graph
(see Figures 1 (a) to (d), in (b) and (d) the mean field solution is undistinguishable of
simulations). For such type of graphs where the variation in the degree is not important
between sites and the mean degree is important (20 or 400 in our simulations), we are very
close to the assumption of a well-mixed system. It is not surprising that the mean field
approximation performs well in such conditions. It can even surpass the pair approximation.
Our interpretation of this difference of behavior is that it lies in the approximation of the
quantity ξkl. Even if the mean field is more naive in terms of states dependence, it is more
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faithful in terms of degree dependence. In the case of a random graph, this will favor this
approximation. But, if we compare the mean field and the pair approximations of the mean
proportion of occupied sites at equilibrium (ρ̄ =

∑

pkρk) with simulated values, we observe
that for both methods the prediction is very precise for random graphs (we do not present the
corresponding figure since the values are undistinguishable). And, when considering more
real graphs, far for the assumption of well-mixed systems, such as the power law graph, we
can see that it becomes more important to take into account the correlation between states
and we observe the superiority of the pair approximation (see Figures 1 (e) and (f)).
We have finally compared the value of ρ̄ at equilibrium for different values of β and for a
power law graph and a random graph with same mean degree. On Figure 2 (a), we can see
that for values of the parameter far from the phase transition, the two graphs lead to almost
the same curve, and the mean field and pair approximation provide quite reliable approxi-
mations. Even the mean field approximation ignoring the graph structure, ρ = 1−1/(βd̄), is
satisfying (black curve). But if we look at the behaviour close to the phase transition (Figure
2 (b)), it is clear that the critical value of β and the sloap of the curve above this value are
different for a random graph and a power law graph. If the mean field provides a rather good
approximation for a random graph (coherent with the results mentionned above), neither
mean field, nor pair approximation are satisfying to describe the behaviour of the power law
graph. None of the approximations lies in the confidence interval obtained from simulations
(blue dashed lines). This simple illustration shows the limits of the pair approximation close
to the phase transition. This is the region the more difficult to approximate but this is also
the more crucial in terms of propagation control.

5 How to improve the pair approximation?

In this section, we relate the pair approximation used along this paper and arising from com-
plexity simplification in ecology to the Bethe approximation ([15]) from statistical mechanics.
The latter is also known as Kirkwood approximation ([19, chapter 21]). The two methods we
are discussing are different solutions for moment closure at order two when studying the evo-
lution and equilibrium of a system of interacting particles. We present first the similarities
and differences between the two approximation methods and explain why Bethe should be
more powerful. We develop then the Bethe approximation of the contamination probability
P 00→10

kl and compare with the pair approximation (19).

5.1 Pair versus Bethe approximation

The pair approximation has been defined in Section 3.2. The idea for the Bethe approxi-
mation is to replace the probability to observe in a given configuration a set of sites linked
by edges, by the product of the probabilities on the existing pairs, divided by the product
of the probabilities of the overcounted singlets. When considering the subgraph formed by
a vertex s of degree k and its neighbours, the existing edges are the k edges from s towards
its neighbours, plus maybe edges between the neighbours themselves. Let us consider for
instance the following subgraph: a site s and its three neighbours, i, j and k, and an edge

9



between i and j. If we apply the Bethe approximation to this example we obtain

P (zs, zi, zj, zk) ≈
P (zi, zj)

∏k

l=i P (zs, zl)

P (zs)2P (zi)P (zj)
(24)

The first difference with the pair approximation is that Bethe is defined for any n-uplet of
sites and not only for triplets. Let us then consider three sites a, b, c, with a linked to b and
b to c. If there is no link between c and a, the Bethe approximation is:

p(za, zb, zc) ≈
p(za, zb)p(zb, zc)

p(zb)
(25)

which is equal to the pair approximation (see (18)). But if c is linked to a, the Bethe
approximation becomes

p(za, zb, zc) ≈
p(za, zb)p(zb, zc)p(za, zc)

p(za)p(zb)p(zc)
(26)

So the pair and Bethe approximation are equivalent for a graph without triangle (a tree).
But for a general graph, the Bethe approximation allows to take into account the presence
or absence of triangles. Note that if in (26), the extra term p(ac)

p(a)p(c)
due to the presence of

the edge between a and c is replaced by its mean field approximation p(a)p(c)
p(a)p(c)

= 1, we recover

(25) or (18) and the pair approximation. The pair approximation can thus be seen as a
variant of the Bethe approximation on triplets, were triangle are handled with the mean
field approximation.
We thus believe that the Bethe approximation should be a powerful tool, worth to investigate
for understanding the particularities of the contact process on a graph. The application of the
Bethe principle (26) leads to more complex computations but it should enhance the influence
of other characteristics of the graph structure than just the mean degree, in particular the
probability that a site and two of its neighbours form a triangle (related to the clustering
coefficient of a graph). The main difference with the pair approximation solution will lie in
the approximation of the transition probabilities, as developped in the next section.

5.2 Bethe approximation of the pair transition probability

Let us recall the exact value (16) of the pair transition rate P 00→10
kl :

P 00→10
kl = β

k−1
∑

i=1

P (zs(i) = 1, zs = 0, zr = 0 | ds = k, dr = l, r ∼ s, s(i) ∼ s)

P (zs = 0, zr = 0 | ds = k, dr = l, r ∼ s)
(27)

where s is the site in the pair moving from 0 to 1 (ds = k), r is the site in the pair remaining
in state 0 (dr = l), and s(i) is one of the k − 1th other neighbour of s (ds(i) is unknown).
For a fixed neighbour s(i) let us consider

A = P (zs(i) = 1, zs = 0, zr = 0 | ds = k, dr = l, r ∼ s, s(i) ∼ s)
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We can decompose first A, by distinguishing the case where the triplet (s, r, s(i)) form a
triangle (labelled by 4) and the case where the edge (r, s(i)) does not exist (labelled by ∧):

A = qkl P (zs(i) = 1, zs = 0, zr = 0 | ds = k, dr = l,4)

+ (1 − qkl)P (zs(i) = 1, zs = 0, zr = 0 | ds = k, dr = l,∧) (28)

where qkl = P (s(i) ∼ r | s ∼ r, s ∼ s(i), ds = k, dr = l) (this probability is assumed
independent of the triplet (s, r, s(i))). The quantity qkl measures a clustering property of the
graph. Since ds(i) is unknown, then we can decompose A over the possible values for ds(i)

yielding:

A = qkl

∑

d

P (zs(i) = 1, zs = 0, zr = 0 | ds = k, dr = l, ds(i) = d,4) ×

P (ds(i) = d | ds = k, dr = l,4)

+ (1 − qkl)
∑

d

P (zs(i) = 1, zs = 0, zr = 0 | ds = k, dr = l, ds(i) = d,∧) ×

P (ds(i) = d | ds = k, dr = l,∧)

= qkl

∑

d

Bkld × P (ds(i) = d | ds = k, dr = l,4)

+ (1 − qkl) Ckld × P (ds(i) = d | ds = k, dr = l,∧) (29)

with

Bkld = P (zs(i) = 1, zs = 0, zr = 0 | ds = k, dr = l, ds(i) = d,4) (30)

Ckld = P (zs(i) = 1, zs = 0, zr = 0 | ds = k, dr = l, ds(i) = d,∧) (31)

We have etablished the Bethe approximation of Bkld (see Appendix for computational details)

Bkld =
ξ4kd . ξ4ld . (1 − ρ4

k − ξ4kl)

ρ4
d . (1 − ρ4

l ) . (1 − ρ4
k )

(32)

where
P (zi = 1|di = d,4) = ρ4

d , P (zi = 0, zj = 1|di = d, dj = m,4) = ξ4dm

P (di = d, dj = m|4) = p4dm

We define also
P (ds = k, dr = l, ds(i) = d) = p4kld

We obtain with the same approach the Bethe approximation of Ckld

Ckld =
ξ∧kd . (1 − ρ∧

k − ξ∧kl)

1 − ρ∧
k

(33)

(the quantities ρ∧
k and ξ∧kl are defined as the corresponding ρ4

k and ξ4kl except that the
conditionning is now equal to ∧.)
Using now (32) and (33), expression (29) of A becomes under Bethe approximation

A = qkl

∑

d

ξ4kd . ξ4ld . (1 − ρ4
k − ξ4kl)

ρ4
d . (1 − ρ4

l ) . (1 − ρ4
k )

×
p4kld

p4kl

+ (1 − qkl)
∑

d

ξ∧kd . (1 − ρ∧
k − ξ∧kl)

1 − ρ∧
k

×
p∧kld

p∧kl

11



At this stage, in order to get an expression of P 00→10
kl with easy interpretation and comparison

with its pair approximation, we will assume that

ρ∧
a = ρ4

a = ρa, ξ∧ab = ξ4ab = ξab (34)

for any a, b ∈ V. In this case, if we denote

αkl =
∑

d

ξkd . ξld

ρd

×
p4kld

p4kl

and γkl =
∑

d

ξkd

p∧kld

p∧kl

(35)

Then

P 00→10
kl = β

k−1
∑

i=1

A

1 − ρk − ξk

= β (k − 1)
1

1 − ρk

(

qkl

1 − ρl

αkl + (1 − qkl)γkl

)

(36)

It can be shown that under the Bethe approximation, γkl = ξ∧k. = ξk., and finally we obtain
the approximation

P 00→10
kl = β

k − 1

1 − ρk

(

qkl

1 − ρl

αkl + (1 − qkl)ξk.

)

(37)

This approximation must be compared with the pair approximation of P 00→10
kl established

in Section (3.2)

P 00→10
kl = β

(k − 1)ξk.

1 − ρk

(38)

We recover the relation mentioned previously: the pair approximation is a Bethe approxi-
mation assuming qkl = 0, i.e. no triangle in the graph. With pair approximation we neglect
the effect of the triangles in the process propagation. With the Bethe approximation, they
are taken into account through the proportion qkl and the correction term β (k−1)αkl

(1−ρk)(1−ρl)

6 Conclusion as a summary

The contact process is a powerful tool to represent and understand the basic mechanism of
an epidemic’s evolution, which is related in this model to the evolution of a single param-
eter: the transmission or contamination parameter. This model is also useful to study the
evolution of a metapopulation. The evolution of such systems (epidemic or metapopulation)
results of the combination of two effects: the intrinsic properties of the disesase/population
and the properties of the network of relationship between the hosts or patches. The knowl-
edge of global characteristics of the graph can thus help establishing strategies for targered
disease control. This has been shown for instance in the case of urban social networks
and vaccination, using dynamics bypartite graphs to model and simulate a realistic network
([20]). More generaly, in real cases, the interaction network can be regular (like it could be
for orchard) but can also be irregular (e.g. forest trees, social or transporation networks).

12



We have focused on the second situation which is challenging since the characterization of
a graph is quite complex (but well studied, [4]) and it is not yet well understood how these
characteristics (degree distribution, clustering property, ...) can affect the evolution of the
process living of this graph (critical point value, epidemy size, propagation speed). Most of
the works on epidemiology on irregular networks are based on the mean field approximation,
assuming no spatial dependencies between the states of each vertex of the graph (e.g. [11]).
This assumption can be valid in the case of well-mixed systems (the environment of each
individual is homogeneous) and this is not true for a large set of graphs. We investigated one
step further here, using two approximations taking into account pair correlation: the pair
and the Bethe approximations. The former is simpler to derive but do not take into account
the presence of triangles in the graph. It is well known in ecology and we extend it to the
case of irregular graphs. The Bethe approximation leads to more complex computations but
allows to go deeper in the characterisation of the graph.

Comparisons between simulations of a time continuous contact process and mean field and
pair approximations predictions allows us to distinguish in which situations one method
should be preferred to the other. In the case of random graphs with sufficient parame-
ter p, we are close to the representation of a well-mixed population: then the mean field
approximation is sufficient and leads to satisfying prediction of the state of the system at
equilibrium. On the contrary, in the case of graphs with a power law distribution of the
degrees, we are far from the well-mixed assumptions: the mean field equations become less
powerful when the model parameter decreases towards to the critical value. In that case,
the pair approximation provides better predictions.

Concerning the understanding of the importance of the different graph’s characteristics in
the process contact equilibrium, the analytic solution derived from our pair approximation
allows to enhance the effect of the degree distribution. Even if this method can improve
the mean field approximation, our results show that the pair approximation can still be far
from the exact process equilibrium. Indeed, it seems obvious that two graphs with same
degree distribution can present different disease evolutions, in particular if they have differ-
ent degrees correlations, or clustering coefficient(see [21] in the case of graphs with constant
degree, and [11] in the case of power law graphs). Thus, we have extended our study by
using the Bethe approximation, taking into account the existence of triangles. This leads to
more elaborate developments but still is tractable. Next work will be to obtain more precise
numerical estimations from closed forms in particular close to the critical point. (Peyrard
and Franc, in prep.)
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7 Appendix

Independence of ξkl on l

We establish here that (20) is the only solution of (11). To this order, we consider now
the evolution of pairs (10) among the pairs of in Gkl. During a period dt, pairs (10) can be
created from pairs (00) or (11), and pairs (10) can disappear through creations of pairs of
type (00) or (11). This can be expressed as

dξlk

dt
= ρl − ξkl + (1 − ρk − ξkl)P

00→10
kl − ξlk(1 + P 10→11

kl ) (39)

with P 10→11
kl dt being the probability that a pair (10) in Gkl changes into state (11) during a

period dt. We use the same notations than in Section 2.3 and we assume that s is the vertex
changing state.

P 10→11
lk =

∑

z̃

β(a(z̃) + 1)P (z̃|zt
s = 0, zt

r = 1, ds = k, dr = l)

= βEQ̃[a(z̃)] + β

= P 00→10
k. + β (40)

Consequently, under (H) and pair approximation, P 10→11
lk is independent of l.

At equilibrium, the derivate (39) is equal to zero so that

0 = ρl − ξkl + (1 − ρk − ξkl)P
00→10
k. − ξlk

(

1 + P 00→10
l. + β

)

(41)

The sum (11) + (41) leads to

0 = (1 − ρl)P
00→10
l. − ρl + βξlk (42)

A consequence of this equality is that at equilibrium ξlk is independant of k, and is thus
equal to its mean ξl.. Thus (11) becomes

ξk. + ξl. = (1 − ρk − ξk.)P
00→10
k. + (1 − ρl − ξl.)P

00→10
l. (43)

And by setting k = l, we recover (20).

Bethe approximation

We establish here the Bethe approximation of expression Bkld. The developments are similar
for expression Ckld. To this order, we define a variable ua for any a ∈ V as ua = (za, da).With
this notation

Bkld = P (zs(i) = 1, zs = 0, zr = 0 | ds = k, dr = l, ds(i) = d,4)

=
P (us(i) = (1, d), us = (0, k), ur = (0, l) | 4)

P (ds(i) = d, ds = k, dr = l | 4)
(44)

14



We apply now the Bethe approximation, as defined in the previous section, on the de-
pendence structure related to variables ua. This structure corresponds to states correlation,
but also to degrees correlation. We obtain the following approximation of the numerator of
expression (44)

P (us(i) = (1, d), us = (0, k), ur = (0, l) | 4)

=
P (us(i) = (1, d), us = (0, k)|4) × P (us(i) = (1, d), ur = (0, l)|4)

P (us(i) = (1, d)|4)× P (us = (0, k)|4)
×

P (us = (0, k), ur = (0, l)|4)

P (ur = (0, l)|4)
(45)

Let us introduce some notations for lisibility

P (zi = 1|di = d,4) = ρ4
d , P (zi = 0, zj = 1|di = d, dj = m,4) = ξ4dm

and
P (di = d, dj = m|4) = p4dm

Then, for instance

P (us = (0, k), ur = (0, l)|4) = (1 − ρ4
k − ξ4kl) p4kl (46)

Let us note as well
P (ds = k, dr = l, ds(i) = d) = p4kld

Equation (44) can be written as

Bkld =
ξ4kd . p4kd . ξ4ld . p4ld . (1 − ρ4

k − ξ4kl ) . p4kl

ρ4
d . p4d . (1 − ρ4

l ) . p4l . (1 − ρ4
k ) . p4k . p4kld

(47)

In (47), the term K =
p
4

kd
. p
4

ld
. p
4

kl

p
4

d
. p
4

l
. p
4

k
. p
4

kld

multiplied by p4kld is exactly the Bethe approximation of

p4kld (this is now the Bethe approximation only on degree dependence). Thus, under Bethe,
K = 1, so that Bkld can be simplifyed:

Bkld =
ξ4kd . ξ4ld . (1 − ρ4

k − ξ4kl)

ρ4
d . (1 − ρ4

l ) . (1 − ρ4
k )

(48)
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Figure 1: Comparison of simulated values (•), pair approximation (◦) and mean field approx-
imation (.) of ρk at equilibrium (1000 vertices): (a) random graph, edge creation probability
p = 0.4 and λ = 4, (b) random graph, p = 0.02 and λ = 4, (c) random graph, p = 0.4 and
λ = 2, (d) random graph, p = 0.02 and λ = 2, (e) power law graph, power = 3, λ = 2, (f)
power law graph, power = 3, λ = 1.2
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Figure 2: Comparison of the occupancy rate ρ̄ at equilibrium versus β for a power law
graph and a random graph with same mean degree, and corresponding mean field and pair
approximations (a) for β ranging from 0.13 to 1, (b) zooming of β ∈ [0.05, 0.2] (dashed lines
show the confidence intervals). 19


